What Are The Main Technical Requirements For Vacuum Pumps In Vacuum Sintering Furnaces? Ensure Material Purity And Efficiency

Learn key vacuum pump requirements for sintering: operating pressure, pumping speed, and robustness to handle contaminants for optimal material densification.

What Are The Common Uses Of Aluminum Films In Semiconductor Devices? Discover Key Applications And Benefits

Explore aluminum films in semiconductor devices for interconnects, bond pads, and cost-effective solutions in modern and legacy chip manufacturing.

Why Is Maintenance Important For Split Tube Furnaces? Ensure Precision, Safety, And Efficiency

Learn how regular maintenance of split tube furnaces preserves temperature control, safety, and efficiency to avoid costly failures and risks.

What Chemical Processes Utilize Electric Furnaces? Achieve Unmatched Precision And Purity

Explore key chemical processes like calcination, pyrolysis, and sintering using electric furnaces for precise temperature control and contamination-free results.

What Is The Temperature Range For Mosi2 Heating Elements? Maximize Lifespan In High-Temp Applications

Learn MoSi2 heating element temperature ranges (1600°C-1800°C furnace, up to 1900°C surface), advantages, and selection tips for labs.

What Are Some Common Applications Of Vertical Tube Furnaces? Unlock Precision In High-Temp Processes

Explore vertical tube furnace uses in materials science, chemical synthesis, and energy applications for superior temperature control and uniformity.

What Is A Split Tube Furnace And What Makes It Versatile? Unlock Easy Access And Flexibility For Your Lab

Learn how split tube furnaces offer direct chamber access, versatility for complex setups, and high-temperature precision up to 1200°C for efficient experiments.

What Is Molybdenum Disilicide (Mosi2) Primarily Used For? Ideal For High-Temp Heating Elements

Discover how MoSi2 heating elements excel in extreme temperatures up to 1800°C with self-healing oxidation resistance for labs and industries.

What Protective Mechanism Helps Mosi2 Elements Resist Oxidation At High Temperatures? Discover The Self-Healing Silica Layer

Learn how MoSi2 heating elements form a self-healing SiO2 layer for oxidation resistance in high-temperature applications, ensuring durability and performance.

What Are The Disadvantages Of Vacuum Brazing? Understanding The Trade-Offs For Your Application

Explore the key drawbacks of vacuum brazing, including high operational complexity, batch processing limits, and metallurgical impacts on components.

What Are The Properties And Applications Of Molybdenum (Mo) In Heating Elements? Choose The Right Element For High-Temp Success

Explore Molybdenum heating elements: properties, applications, and how to select between pure Mo and MoSi₂ for vacuum or oxidizing atmospheres up to 1900°C.

What Are The Characteristics Of Inconel (Nicrfe) As A Heating Element Material? Discover Its High-Temp Reliability

Explore Inconel's key traits: high electrical resistivity, protective oxide layer, stable resistance, and strength for durable heating in harsh environments.

What Are The Models Of Mosi2 Heating Elements And Their Working Temperatures? Choose The Right Model For Your High-Temp Needs

Explore MoSi2 heating element models like 1700 and 1800, their max temperatures up to 1700°C, and tips for longevity in lab furnaces.

Why Is Silicon Carbide Resistant To Chemical Reactions In Industrial Furnaces? Unlock Durable High-Temp Solutions

Explore silicon carbide's chemical resistance in furnaces: strong covalent bonds and self-healing SiO₂ layer for reliable high-temperature performance.

What Are The Advantages Of Using Silicon Carbide Heating Elements In Industrial Furnaces? Boost Efficiency And Durability

Discover the benefits of SiC heating elements: high-temperature operation up to 1600°C, rapid heating, chemical resistance, and long life for industrial furnaces.

How Do Induction Melting Furnaces Ensure Superior Metal Quality? Achieve Purity, Homogeneity & Control

Discover how induction melting furnaces use contactless heating & electromagnetic stirring to produce cleaner, more uniform, and higher-quality metal than traditional methods.

What Are The Pros And Cons Of Vertical Tube Furnaces? Precision Vs. Capacity For Your Lab

Explore vertical tube furnace advantages like temperature uniformity and purity, plus limitations in capacity and cost for labs.

What Are The Key Features And Benefits Of A Vacuum Induction Melting Furnace? Achieve High-Purity Metal Production

Discover how Vacuum Induction Melting furnaces ensure high-purity metals with precise control, ideal for aerospace and advanced materials applications.

What Are The Advantages Of Using A Vacuum Or Protected Atmosphere In Sintering? Boost Material Purity And Performance

Learn how vacuum or protected atmosphere sintering prevents oxidation, enhances density, and improves mechanical properties for superior material quality.

What Pressure Range Is Typically Used In A Vacuum Brazing Furnace? Optimize For Clean, Strong Metal Joints

Learn the ideal vacuum brazing furnace pressure range (10⁻³ to 10⁻⁵ mbar) to prevent oxidation, ensure proper braze flow, and achieve reliable results.

What Is A Vertical Tube Furnace And How Does It Function? Optimize Material Processing With Precision

Learn how vertical tube furnaces provide uniform heating, controlled atmospheres, and space efficiency for advanced lab applications like CVD and sintering.

What Are The Common Applications Of A Vertical Tube Furnace? Achieve High-Purity, Uniform Heating For Materials Science

Explore vertical tube furnace applications in semiconductor processing, material synthesis, and quenching tests for superior purity and uniform heat treatment.

What Are The Key Features Of A Vertical Tube Furnace? Maximize Efficiency In High-Temperature Labs

Explore the key features of vertical tube furnaces: space-saving design, precise temperature control, and uniform heating for research and manufacturing.

What Is The Necessity Of Preheating Reinforcement Materials? Eliminate Defects In Aluminum Alloys

Learn why preheating iron oxide and cobalt at 450°C is essential for moisture removal and preventing porosity in aluminum alloys.

Why Is A High-Precision Programmed Heating Furnace Essential For The Annealing Reduction Of Intermetallic Compounds?

Learn how precision heating controls atomic reorganization, prevents sintering, and protects active sites in intermetallic compound production.

What Are The Technical Advantages Of Using Vacuum-Assisted Impregnation For 3D Lig/Polymer Composites? Boost Strength

Learn how vacuum-assisted impregnation eliminates defects and improves mechanical interlocking in 3D Laser-Induced Graphene/polymer composites.

What Is The Purpose Of A High-Temperature Muffle Furnace For Rare Earth Oxalate Calcination? Achieve High-Purity Reos

Learn how high-temperature muffle furnaces decompose rare earth oxalates into stable oxides through precise 900°C thermal treatment and purification.

What Are The Technical Advantages Of Vacuum Spark Plasma Sintering (Sps) Systems? Advanced Sic Ceramic Densification

Discover how vacuum SPS outperforms traditional hot-pressing for SiC ceramics through rapid heating, fine grain control, and superior density.

What Role Does A Vacuum Annealing Furnace Play In Ncg Synthesis? Precision Carbonization For Nanomaterials

Learn how vacuum annealing furnaces enable the conversion of polymer precursors into nanocrystalline graphite through controlled carbonization.

How Does A Vacuum Sintering Furnace Facilitate The Final Densification Of 3D-Printed Fused Silica Glass? Expert Guide

Learn how vacuum sintering at 1050 °C transforms 3D-printed silica green bodies into transparent, high-density fused silica glass.

What Is The Function Of A Quartz Tube Furnace In The Dry Thermal Oxidation Of Silicon Wafers? Enhance Your Oxide Quality

Learn how Quartz Tube Furnaces provide precise 850°C control and pure oxygen environments for high-quality SiO2 layer growth on silicon wafers.

Why Is A High-Vacuum Environment Required Before Vacuum Hot Rolling? Ensure Superior Clad Plate Bonding Integrity

Learn why a 10⁻² torr vacuum is essential to prevent oxidation and ensure metallurgical bonding between SS317L and GR60 steel during hot rolling.

What Are The Advantages Of Using A Vacuum Oven For Drying Nife2O4/Biochar Samples? Preserve Purity And Porosity

Learn why vacuum drying is superior for NiFe2O4/biochar, offering lower boiling points, oxidation prevention, and deep micropore solvent removal.

How Is A Muffle Furnace Utilized In The Determination Of Ash Content In Biomass Samples? Accurate Analysis Guide

Learn how muffle furnaces isolate inorganic residues at 575°C to determine biomass ash content, evaluate fuel purity, and prevent slagging risks.

Why Is A Gas Nitriding Furnace Equipped With An Atmosphere Control System Used For Titanium Alloys? Ensure Precision

Learn how atmosphere control in gas nitriding furnaces prevents titanium embrittlement and creates high-performance TiN composite coatings.

Why Is A Laboratory Resistance Furnace Preferred For Al-5Er-Ti Alloys? Achieve High-Purity Homogeneity

Discover why resistance furnaces are the top choice for Al-5Er-Ti master alloys, offering 1100°C+ stability for precise titanium melting.

What Are The Primary Functions Of A Quartz Flow Reactor? Enhance Precision In Oxidation Research

Learn how Quartz Flow Reactors provide chemical inertness and precise thermal control for ammonia and diethyl ether oxidation experiments.

What Are The Primary Advantages Of Industrial Sps Vs. Vacuum Hot-Pressing For Ti-6Al-4V? Achieve Superior Microstructure

Discover why SPS outperforms vacuum hot-pressing for Ti-6Al-4V through rapid heating, lower temperatures, and suppressed grain growth.

What Is The Purpose Of The Secondary Heat Treatment In An Annealing Furnace? Enhance S@Se-Zns/Hsc Material Stability

Learn how the 230°C secondary heat treatment purifies S@Se-ZnS/HSC surfaces, prevents the shuttle effect, and optimizes battery performance.

Why Is A High-Precision Isothermal Furnace Required For Adi Heat Treatment? Ensure High-Performance Microstructures

Learn why high-precision isothermal furnaces like salt baths are essential for ADI heat treatment to control ausferrite and prevent brittle bainite.

How Does An Industrial High-Temperature Furnace Simulate The Blast Furnace Reduction Environment? Achieve 30% Reduction

Learn how high-temperature furnaces replicate blast furnace environments using 1273 K heat and gas mixtures for standardized iron ore reduction.

What Is The Function Of A High-Temperature Calcination Furnace? Mastering Pr3+:Cagdf2 Nanopowder Precursor Prep

Learn how high-temperature calcination furnaces enable pure fluorite phase formation and volatile removal for Pr3+:CaGdF2 nanopowder precursors.

What Is The Primary Role Of A Muffle Furnace In The Calcination Of Pt-Xwo3/Sio2? Optimize Catalyst Phase-Engineering

Learn how muffle furnaces drive phase transformation, precursor decomposition, and interface engineering in Pt-xWO3/SiO2 catalyst synthesis.

How Does The Calcination Process In A Muffle Furnace Facilitate The Formation Of Pores In Manganese Oxide?

Learn how 600°C muffle furnace calcination uses thermal decomposition and carbon template removal to create porous manganese oxide structures.

How Does The Annealing Process In A High-Temperature Furnace Modify Mos2? Optimize Thermoelectric Performance

Learn how high-temperature annealing refines MoS2 morphology, boosts carrier mobility, and maximizes thermoelectric power factor through grain growth.

Why Is A High-Precision Furnace Required For Li22Sn5 Synthesis? Ensure Pure-Phase Alloy Stability

Learn why precise thermal control at 210°C is essential for Li22Sn5 synthesis, ensuring atom diffusion and stable crystal structures for batteries.

What Role Does A Quartz Tube Furnace Play In Polyimide Pyrolysis? Precision Control For Carbon Molecular Sieves

Learn how quartz tube furnaces enable precise temperature ramping and inert atmospheres to convert polyimide into high-performance carbon sieves.

What Is The Significance Of High-Temperature Calcination In A Muffle Furnace? Mastering Ce-Tio2 Catalyst Preparation

Learn how high-temperature calcination at 600°C transforms Ce-TiO2 precursors into high-performance catalysts using programmable muffle furnaces.

What Role Does A High-Temperature Calcination Furnace Play In Establishing The Crystal Phase Of Perovskite Catalysts?

Learn how high-temperature calcination furnaces engineer the rhombohedral crystal phase of perovskite catalysts through thermal oxidation.

How Does The Vacuum Induction Melting (Vim) Process Work? Achieve Superior Metal Purity And Control

Learn how Vacuum Induction Melting (VIM) works for high-purity metals, with step-by-step breakdown, advantages, and applications in superalloys.

What Are The Common Applications Of Vacuum Induction Melting? Essential For High-Performance Metals And Alloys

Explore Vacuum Induction Melting applications in aerospace, high-purity metals, and advanced materials for superior purity and performance.

What Is The Function Of Low-Oxygen Controlled Powder Sintering In Cu-Fe-Zn Alloys? Master Interstitial Strengthening

Learn how low-oxygen powder sintering uses 10% N2/90% Ar to prevent oxidation and enable nitrogen-interstitial strengthening in Cu-Fe-Zn alloys.

What Densification Mechanism Does Oscillatory Pressure Sintering Introduce? Harness Shear Forces For H-Bn Ceramics

Discover how oscillatory pressure sintering uses shear forces and particle sliding to achieve high-density h-BN ceramics at lower temperatures.

Why Is A Protective Atmosphere Annealing Furnace Required For Treating Alumina Dispersion Strengthened Copper (Adsc) Rods After The Hot Extrusion Process? Ensure Dimensional Stability And Oxidation-Free Results

Discover why protective atmosphere annealing in argon at 900°C is critical for ADSC rods to relieve extrusion stress and prevent surface oxidation, ensuring material integrity.

What Function Does A High-Temperature Box Furnace Serve In Llzo Sintering? Achieve Superior Llzo Densification

Learn how high-temperature box furnaces enable 1000°C pressureless sintering of LLZO through thermal precision and liquid-phase assistance.

How Do Heating Rate And Holding Temperature Influence Zr2.5Nb Nitride Growth? Optimize Your Zrn Layer Thickness

Learn how heating rates and 1000°C temperatures optimize ZrN layer thickness, crystal density, and hardness on Zr2.5Nb alloys in lab furnaces.

In What Common Configurations Are Graphite Heating Elements Arranged In Vacuum Furnaces? Optimize For Uniform Heating

Explore circular, octagonal, flat strip, and tubular graphite heating element configurations for superior temperature uniformity in vacuum furnaces.

How Is The Vacuum Level In A Furnace Measured And Represented? Ensure Precision For Your Heat Treatment

Learn how vacuum levels in furnaces are measured in units like Pa and Torr, using gauges and pumps to prevent oxidation and ensure material purity.

What Materials Are Compatible With Low Vacuum Atmosphere Furnaces? Ideal For Cost-Effective Heat Treatment

Learn which materials like steel, alloys, ceramics, and glass work in low vacuum furnaces for annealing, brazing, and sintering processes.

What Are The Temperature Limitations For Furnaces Using Molybdenum Disilicide Heating Elements? Key Factors And Solutions Explained

Learn about MoSi2 furnace temperature limits up to 1800°C, atmosphere effects, and pest prevention for reliable high-temperature operations.

Which Metals Are Prone To Oxidation During Melting? Protect With Vacuum Or Inert Gas Furnaces

Learn why metals like titanium and zirconium require vacuum or protective atmosphere furnaces to prevent oxidation and ensure material integrity.

Which Metals Are Commonly Joined Using A Brazing Oven? Unlock Versatile Metal Joining Solutions

Discover common metals like stainless steel, nickel alloys, copper, and titanium joined in brazing ovens, including dissimilar material bonding for advanced applications.

What Is A Batch Furnace And How Does It Operate? Master Precision Heat Treatment For Diverse Applications

Learn how batch furnaces provide superior process control, flexibility, and atmosphere integrity for low-volume, high-mix industrial heat treatment.

What Is The Purpose Of Ashing Furnaces? Achieve Precise Ash Analysis For Material Quality

Learn how ashing furnaces isolate inorganic residue for accurate ash content measurement in fuels, lubricants, and materials to ensure quality control.

What Are The Benefits Of Understanding Cvd Principles And Implementing Advanced Strategies? Boost Component Performance And Reliability

Learn how deep CVD knowledge enhances precision, durability, and versatility in coatings for superior product performance and competitive edge.

What Are The Advantages Of Vacuum Induction Furnace Melting For Superalloys? Achieve Purity And Performance

Discover how vacuum induction melting (VIM) ensures ultra-pure, homogeneous superalloys with precise chemical control for extreme temperature applications.

How Does A Vacuum Arc Furnace Operate? Achieve Ultra-Pure Metals For Demanding Applications

Learn how vacuum arc furnaces melt metals in a vacuum to eliminate impurities, ensuring high purity and superior mechanical properties for aerospace and medical uses.

How Do Induction Furnaces Contribute To Cost Savings In The Long Term? Unlock Long-Term Efficiency And Roi

Discover how induction furnaces reduce energy use, lower maintenance, and improve metal quality for significant long-term cost savings and higher ROI.

What Are Graphite Retorts Used For In Vacuum Furnaces? A Guide To High-Temperature Processing

Discover how graphite retorts enable sintering, annealing, and brazing in vacuum furnaces by providing a stable, high-temperature environment for your materials.

Why Is Graphite Felt Replacing Graphite Board In Vacuum Furnace Insulation? Boost Efficiency & Durability

Discover why graphite felt is the superior choice for vacuum furnace insulation, offering better thermal performance, durability, and easier maintenance.

What Makes Fluidized Bed Vertical Tube Furnaces Environmentally Friendly? Discover Efficient Green Tech Solutions

Learn how fluidized bed vertical tube furnaces boost energy efficiency, cut emissions, and drive innovations in carbon capture and renewable energy for a sustainable future.

What Are The Key Takeaways For Optimizing A Split Tube Furnace? Boost Precision And Efficiency In Your Lab

Learn essential tips for optimizing split tube furnaces, including temperature control, setup, and maintenance for reliable thermal processing.

What Advantages Does Vacuum Induction Melting Offer? Achieve Unmatched Metal Purity And Performance

Discover how vacuum induction melting (VIM) delivers superior purity, precise alloy control, and structural homogeneity for high-performance metals.

How Does A Laboratory Blast Drying Oven Facilitate The Treatment Of Au/Zno/In2O3 Precursor Precipitates? Key Benefits

Learn how blast drying ovens prevent nanoparticle agglomeration and preserve porosity in Au/ZnO/In2O3 precursors through uniform solvent removal.

What Are The Technical Advantages Of Using A Double-Electron-Beam Melting Furnace For The Synthesis Of Ti-20Zr Alloys?

Discover how double-electron-beam melting ensures high purity, uniform composition, and defect-free ingots for Ti-20Zr alloy synthesis.

Why Is Precision Temperature Control Critical For Mnbi2Te4 Growth? Ensure Success In Flux Method Crystallization

Learn why high-precision temperature control and slow cooling rates (0.5°C/h) are vital for growing high-quality MnBi2Te4 crystals.

Why Is Precise Sample Loading Critical In Co2 Capture Experiments? Avoid Bed Effects And Ensure Data Integrity

Learn why precise loading and distribution in high-temp equipment are vital to eliminate diffusion resistance in CO2 capture kinetic studies.

How Does A Laboratory Air Furnace Contribute To The Pre-Oxidation Stage Of Electrospun Nanofibers? Expert Guide

Learn how laboratory air furnaces enable stabilization, molecular cross-linking, and ladder structure formation in electrospun nanofibers.

How Does Temperature Control In Carbonization Furnaces Affect Structural Battery Anodes? Optimize Fiber Performance

Learn how precise furnace temperature control between 1300°C and 1500°C balances carbon fiber mechanical strength and energy storage capacity.

What Roles Do A Controlled Atmosphere Furnace And Oil Quenching Tank Play In Aisi 5140 Steel Heat Treatment?

Learn how controlled atmosphere furnaces and oil quenching tanks optimize AISI 5140 steel through precise heating and crack-free cooling.

What Role Do Rtp Or Continuous Sintering Furnaces Play In Solar Cell Electrode Formation? Optimize Your Firing Process

Learn how RTP furnaces enable glass frit fire-through and ohmic contact in silicon solar cells while preserving bulk silicon material quality.

What Critical Environmental Conditions Does A High-Temperature Recrystallization Annealing Furnace Provide? Maximize Steel Strength

Learn why a 950°C thermal environment and 15-minute dwell time are vital for achieving 1241 MPa yield strength in cold-rolled steel.

What Is The Purpose Of Using A High-Vacuum Drying Oven? Maximize Battery Performance And Electrode Purity

Learn how high-vacuum drying ovens remove residual NMP and moisture from electrode sheets to prevent battery degradation and improve adhesion.

What Is The Purpose Of Using A Pre-Sintering Furnace With An Argon Flow? Protect Hastelloy-X Integrity

Learn why argon flow and precise 600-700°C temperatures are critical for oxidation protection and bonding in Hastelloy-X thermal processing.

What Is The Role Of A Vacuum Induction Furnace In Cunisicrcotinbx Synthesis? Ensure Purity & Homogeneity

Learn how vacuum induction furnaces use 1300°C temperatures and argon shielding to create high-purity CuNiSiCrCoTiNbx medium-entropy alloys.

What Role Does A Vacuum Arc Melting Furnace Play In The Melting Of Fe60Co15Ni15Cr10 Alloys? Unlock Superior Uniformity

Learn how vacuum arc melting furnaces use electromagnetic stirring and argon environments to ensure homogeneity in Fe60Co15Ni15Cr10 alloys.

What Is The Importance Of A Gas Pressure Sintering Furnace For Silicon Nitride? Achieve High-Performance Densification

Learn why 1900°C and 1 MPa nitrogen pressure are critical for densifying Silicon Nitride without material decomposition or degradation.

What Conditions Does A Continuous Flow Fixed-Bed Quartz Reactor Provide? Master Co Oxidation Testing With Cobalt Oxide

Learn how continuous flow fixed-bed quartz reactors provide precise gas dynamics and thermal control for CO oxidation catalyst performance testing.

What Critical Function Does A High-Temperature Atmosphere Sintering Furnace Serve? Engineer Advanced Nuclear Fuels

Learn how high-temperature atmosphere sintering furnaces enable grain growth and densification in manganese-doped uranium dioxide fuel.

Why Is A Steam Generator And Programmable Furnace Needed For Emission Aging? Replicate Real Hydrothermal Environments

Discover why combining steam generators with furnaces is vital for simulating diesel exhaust aging and testing catalyst hydrothermal stability.

How Does A Laboratory Tube Furnace Regulate The Positioning Of Platinum (Pt) Atoms? Mastering Atomic-Scale Engineering

Learn how precision tube furnaces control Pt atom migration via temperature (300°C-450°C) and atmosphere to create high-performance catalysts.

Why Must Calcination Equipment Be Used To Pre-Treat Zsm-5 Zeolite? Ensure Accurate Voc Adsorption Testing

Learn why pre-treating ZSM-5 zeolite at 550 °C is essential to remove moisture and impurities for accurate VOC static adsorption performance tests.

Why Is Precise Temperature Control In An Electric Melting Furnace Essential For Az91D/Si3N4/Wgp Composites?

Learn why 680°C thermal precision is critical for AZ91D composites to ensure matrix fluidity, uniform particle distribution, and structural integrity.

What Is The Function Of A Vacuum Induction Melting Furnace? Essential Precision For Steel Research

Learn how Vacuum Induction Melting (VIM) furnaces ensure high purity, precise alloying, and gaseous impurity removal for steel ingot research.

Why Is A High-Temperature Atmosphere Annealing Furnace Used After Depositing Cu-Doped In2O3 Thin Films?

Discover how high-temperature annealing repairs lattice damage and activates copper dopants to enhance Cu-doped In2O3 thin film performance.

What Is The Role Of A Laboratory-Scale Vim Furnace For Carbide-Free Bainitic Steel? High-Purity Ingot Development

Learn how vacuum induction melting (VIM) ensures chemical precision, prevents oxidation, and achieves homogeneity for bainitic steel research.

What Role Does A Vacuum Induction Melting (Vim) Furnace Play In The Recycling Of Low Alloy Steel? Ensure Purity.

Learn how VIM furnaces preserve critical alloying elements and remove impurities during the recycling and remelting of high-value low alloy steel.

Why Is A Two-Step Cooling System Necessary For Titanium Hydrogenation? Protect Your Alloy’s Integrity

Learn why a two-step cooling process with high-purity argon is critical to preventing oxidation and controlling phase distribution in titanium alloys.

What Is The Primary Role Of Vacuum Induction Melting Equipment In The Preparation Of Niti Alloys? Ensure Nitinol Purity

Learn how Vacuum Induction Melting (VIM) secures precise atomic ratios and biocompatibility in NiTi alloys by preventing titanium oxidation.

Why Is A High-Vacuum Sealed Quartz Tube Required For The Heat Treatment Of Te1S7/C Composites? Ensure Purity & Loading

Learn how high-vacuum sealed quartz tubes prevent oxidation and ensure effective melt-diffusion of Te1S7/C composites during heat treatment.