What Is The Recommended Procedure For Maintaining Atmosphere Purity In A Vacuum Tube Experimental Furnace? Ensure High-Purity Results

Learn the pump-and-purge method to remove contaminants and achieve high atmosphere purity in vacuum tube furnaces for reliable experiments.

What Is A Vacuum Sintering Furnace And What Is Its Primary Purpose? Achieve High-Purity, Dense Materials With Precision

Learn how vacuum sintering furnaces prevent oxidation and contamination to produce strong, pure components from metals and ceramics in controlled environments.

How Can The Purity Of The Atmosphere Inside A Vacuum Tube Experimental Furnace Be Increased? Master Vacuum Purging For Pristine Results

Learn the multi-step vacuum purge cycle to achieve high-purity atmospheres in tube furnaces, critical for sensitive materials processing and oxidation prevention.

What Are The Core Functions Of A Vacuum Thermal Reduction Furnace? Efficiently Extract Pure Magnesium

Learn how a vacuum thermal reduction furnace uses heat and vacuum to extract metallic magnesium from szaibelyite or boron sludge.

How Are High-Temperature Vacuum Furnaces Utilized In Scientific Research? Unlock Pure, Controlled Material Synthesis

Explore how high-temperature vacuum furnaces enable pure material synthesis, process simulation, and component refinement in scientific research, free from contamination.

What Is The Recommended Procedure For Atmosphere Control In A Vacuum Tube Furnace? Optimize Your High-Temperature Processes

Learn the step-by-step procedure for precise atmosphere control in vacuum tube furnaces, ensuring purity and optimal performance for your lab applications.

What Are The Key Uses Of Vacuum Annealing Furnaces? Achieve Superior Material Integrity And Purity

Discover how vacuum annealing furnaces prevent oxidation, enhance material properties, and ensure uniform heating for metals, electronics, and aerospace applications.

What Are The Main Advantages Of Vacuum Melting Furnaces? Achieve Ultra-Pure Metals For High-Performance Applications

Discover how vacuum melting furnaces eliminate contamination, enhance material properties, and enable precise alloy production for aerospace, medical, and more.

How Does Vacuum Sintering Compare To Traditional Smelting Methods? Discover Key Differences For Your Manufacturing Needs

Compare vacuum sintering vs. smelting: learn purity, precision, and energy efficiency benefits for high-performance metal component manufacturing.

What Are The Typical Dimensions Of Laboratory-Scale Vacuum Furnaces? Optimize Your Lab's Space And Precision

Learn about lab vacuum furnace dimensions, typically ≤500mm cubes, for precise, controlled high-temperature processing in R&D environments.

What Is The Recommended Procedure For Using A Vacuum Tube Type Experimental Furnace With A Specific Atmosphere? Master Precise Control For Your Experiments

Learn the step-by-step procedure for using a vacuum tube furnace with specific atmospheres to ensure purity, prevent contamination, and achieve reliable results.

What Infrared Materials Can Be Produced Using High Temperature Vacuum Furnaces? Discover Zns, Znse, And More

Learn how high-temperature vacuum furnaces produce pure infrared materials like ZnS and ZnSe for superior optical performance in harsh environments.

What Is Vacuum Hot Pressing Used For In Ceramic And Powder Metal Targets? Achieve Superior Density And Purity

Learn how Vacuum Hot Pressing enhances ceramic and metal targets with high density, reduced porosity, and improved mechanical strength for demanding applications.

What Is A Batch Type Furnace? Master Precision Heat Treatment For Diverse Materials

Discover how batch furnaces provide superior process control, flexibility, and atmosphere management for precise, high-quality heat treatment cycles.

What Is Sintering In A Vacuum Atmosphere? Achieve Maximum Purity For High-Performance Parts

Learn how vacuum sintering prevents oxidation and ensures superior material purity for sensitive metals and ceramics, compared to atmosphere sintering.

What Is The Temperature Of A Vacuum Furnace Brazing? Optimize Your Joint Strength And Cleanliness

Vacuum furnace brazing typically runs from 800°C to over 1200°C. Learn how temperature, filler metal, and base materials ensure a perfect, flux-free joint.

What Is A Hot Wall Vacuum Furnace Design? Discover Its Key Benefits And Applications

Learn about hot wall vacuum furnace design, its components, advantages like process purity and reliability, and ideal uses for brazing and annealing.

What Specialized Processes Utilize Box Furnaces? Discover Versatile Heat Treatment Solutions

Explore box furnace applications in metallurgy, sintering, semiconductor fabrication, and ceramics for precise temperature control and material transformation.

What Comprises The Working Chamber Of A Box Type Resistance Furnace? Discover The Core Components For Efficient High-Temp Operations

Learn about the key components of a box furnace's working chamber, including the hearth, heating elements, insulation, and control systems for precise thermal management.

What Is The Key Principle Of A Hot Press Sintering Furnace? Achieve Superior Densification For High-Performance Materials

Learn how hot press sintering uses heat and pressure in a vacuum to create dense, strong materials for advanced applications, outperforming traditional methods.

How Are Tubular Furnaces Utilized In Semiconductor Manufacturing? Precision Thermal Processing For High-Yield Ics

Explore how tubular furnaces enable critical semiconductor processes like oxidation, CVD, and doping with precise temperature control and purity for reliable IC fabrication.

How Does Vacuum Brazing Prevent Oxidation And Contamination? Achieve Clean, Strong Joints For Critical Applications

Learn how vacuum brazing eliminates oxidation and contamination by removing oxygen, ensuring pure, reliable joints for aerospace, medical, and semiconductor industries.

What Materials Are Used In High-Temperature Vacuum Furnace Hot Zones? Optimize Your Process With The Right Choice

Explore key materials like molybdenum, tungsten, and graphite for vacuum furnace hot zones, balancing temperature, purity, and cost for optimal performance.

What Are Some Examples Of Vacuum Brazing Projects? Discover High-Strength Joining For Aerospace And Medical

Explore vacuum brazing applications in aerospace, medical, and electronics for strong, pure joints of dissimilar materials like metal to ceramic.

How Does Vacuum Brazing Differ From Welding? Precision Joining Without Melting Base Materials

Learn the key differences between vacuum brazing and welding, including temperature control, material integrity, and joint strength for optimal fabrication.

What Are The Advantages Of Using A Vacuum Brazing Furnace? Achieve Clean, Strong, And Flux-Free Joints

Discover how vacuum brazing furnaces prevent oxidation, ensure temperature uniformity, and enable flux-free joining of dissimilar materials for superior quality.

What Are The Benefits Of Vacuum Brazing For Power Generation Equipment? Achieve Clean, Strong, And Reliable Joints

Discover how vacuum brazing enhances power generation equipment with clean, strong joints, no flux, and superior thermal integrity for fuel cells and heat exchangers.

How Does Vacuum Brazing Contribute To Environmental And Safety Advantages? Discover Cleaner, Safer Metal Joining

Learn how vacuum brazing eliminates hazardous fumes and chemical fluxes, enhancing workplace safety and reducing environmental impact for cleaner operations.

What Factors Should Be Considered When Selecting A Crucible Material For A Vacuum Casting Furnace? Ensure Purity And Performance

Learn key factors like chemical inertness, thermal stability, and mechanical durability for selecting crucible materials to prevent contamination and failure in vacuum casting.

What Are The Advantages Of Using Hot Pressing In Manufacturing? Achieve Superior Quality And Precision

Discover the key benefits of hot pressing, including superior mechanical properties, dimensional accuracy, and material integrity for high-performance applications.

What Are The Key Advantages Of Melting Metals Under Vacuum Or Protective Atmospheres? Achieve Purity And Precision In Metal Processing

Discover how vacuum and protective atmosphere melting prevent oxidation, remove impurities, and ensure precise alloy control for superior metal quality and performance.

How Do Continuous Vacuum Furnaces Enhance Production Efficiency In Large-Scale Metal Processing? Boost Throughput And Quality

Discover how continuous vacuum furnaces increase efficiency in metal processing with uninterrupted flow, consistent quality, and energy savings for large-scale operations.

How Are Horizontal Furnaces Utilized In The Automotive Sector? Boost Component Durability And Efficiency

Learn how horizontal furnaces enable carburizing, annealing, and hardening for automotive parts, enhancing strength and wear resistance in mass production.

What Types Of Metals Can Be Processed In A Vacuum Casting Furnace? Discover High-Performance Metal Processing Solutions

Learn which metals, like titanium, superalloys, and high-purity metals, are ideal for vacuum casting to prevent oxidation and ensure superior quality.

How Does The Vacuum Chamber In A Vacuum Casting Furnace Function? Unlock Purity And Performance In Metal Casting

Learn how a vacuum chamber in casting furnaces prevents oxidation and gas porosity for high-purity, strong metal components with precise control.

What Factors Are Critical For Successful Vacuum Brazing? Master Joint Strength And Clean Bonds

Learn key factors for vacuum brazing success: joint design, cleanliness, material selection, and thermal control for strong, distortion-free bonds.

What Commercial Options Are Mentioned For Vacuum Or High-Temperature Furnaces? Find Your Ideal Industrial Furnace Solution

Explore commercial vacuum and high-temperature furnace options from top vendors like Centorr and Camco, tailored for materials processing in aerospace, medical, and electronics.

What Are The Key Considerations When Choosing A Continuous Furnace? Optimize Your High-Volume Production

Learn essential factors like temperature control, throughput, and cost for selecting the right continuous furnace to boost efficiency and ROI.

What Industries Commonly Use Vacuum Casting And For What Applications? Discover Versatile Solutions For Prototyping And High-Performance Parts

Explore vacuum casting applications in aerospace, medical, automotive, and consumer goods for high-fidelity prototypes and critical metal components.

Why Use An Air Atmosphere Furnace For Annealing Magnesium Aluminum Spinel? Restoring Lattice & Optical Integrity

Learn why post-sintering annealing in an air atmosphere furnace is vital for repairing oxygen vacancies and stress in spinel ceramics.

Why Are Vacuum Tube Furnaces Considered Valuable In Various Fields? Unlock Precision In Material Processing

Discover how vacuum tube furnaces enable high-temperature, controlled atmosphere processing to prevent oxidation and enhance material purity in labs and industries.

What Are The Primary Applications Of Vacuum Tube Furnaces In Materials Science? Unlock Precision In Material Synthesis And Heat Treatment

Explore how vacuum tube furnaces enable high-purity material synthesis, heat treatment, and analysis in materials science, preventing oxidation and contamination.

How Does Automation Enhance The Hot Pressing Process? Boost Precision, Efficiency, And Quality

Discover how automation in hot pressing improves precision, reduces errors, and ensures consistent high-quality output for advanced materials and high-volume production.

What Are The Thermal Performance Advantages Of Vacuum Tube Furnaces? Achieve Faster, Purer Heat Treatment

Discover how vacuum tube furnaces offer rapid heating, superior efficiency, and precise control for enhanced material purity and cost savings in labs.

What Are The Key Applications Of Laboratory Vacuum Furnaces? Unlock High-Purity Material Processing

Explore key applications of lab vacuum furnaces in materials science, semiconductors, and aerospace for oxidation-free, high-temperature processes.

What Are The Main Types Of Heat Treatment Furnaces? Choose The Right Furnace For Your Lab Or Industry

Explore muffle, tube, retort, and vacuum furnaces for precise heat treatment in labs and industries. Learn to match furnace types to your material and process needs.

How Is Vacuum Hot Press Equipment Used In R&D? Innovate With High-Purity Materials

Explore Vacuum Hot Press applications in R&D for prototyping composites, ceramics, and alloys with enhanced density and purity in controlled environments.

What Are The Common Applications Of Hot Press Furnaces? Unlock High-Density Material Solutions

Explore hot press furnace uses in ceramics, composites, and superhard materials for superior density and performance in controlled environments.

What Are The Main Industrial Applications Of Vacuum Melting Furnaces? Achieve Unmatched Material Purity And Performance

Explore key uses of vacuum melting furnaces in aerospace, medical, and energy sectors for superior metal purity, strength, and reliability in critical applications.

Why Is A High Vacuum Furnace Necessary For The Solution Treatment Of Cold-Rolled Tnztsf Alloys? Prevent Oxidation.

Learn why high vacuum furnaces are essential for TNZTSF alloys to prevent oxidation and embrittlement while ensuring complete recrystallization.

What Environmental Conditions Does A Vacuum Tube Furnace Provide For Fto(P)/Zns(P) Films? High-Purity Post-Treatment

Learn how vacuum tube furnaces use 0.001 mbar pressure and 150°C annealing to optimize FTO(p)/ZnS(p) film stability and prevent oxidation.

What Is The Primary Function Of A Hot-Pressing Furnace In Sic Bicrystal Synthesis? Achieve Precision Atomic Bonding

Learn how hot-pressing furnaces bond Silicon Carbide (SiC) wafers using 1000°C and 30 MPa pressure to create high-quality, stable bicrystals.

How Does A Specialized Ion Nitriding Furnace Achieve Gradient Hardening On Tc4 Titanium? Boost Surface Wear Resistance

Learn how ion nitriding furnaces use plasma diffusion to create seamless gradient hardening on TC4 titanium alloys for superior durability.

What Are The Limitations Of Traditional Titanium Melting? Overcoming Inefficiency In Vacuum Arc And Induction Furnaces

Explore why traditional vacuum consumable arc and induction furnaces struggle with titanium alloys, focusing on uniformity and energy consumption.

How Does A Vacuum High-Temperature Furnace Facilitate The Study Of Element Diffusion? Precise Thermal Control Guide

Learn how vacuum high-temperature furnaces enable precise element diffusion studies by providing thermal activation energy and preventing oxidation.

How Does A Tube Furnace Ensure A Controlled Reaction Environment? Achieve Precise Isothermal Oxidation Results

Learn how tube furnaces eliminate parasitic oxidation and ensure precise isothermal conditions using gas switching and thermal stability control.

Why Is A Vacuum Environment Essential When Using A Spark Plasma Sintering (Sps) Furnace For Ti64-Si3N4-Zro2? Achieve Optimal Density & Purity

Discover why a vacuum environment in SPS is critical for Ti64-Si3N4-ZrO2 composites. Prevent oxidation, remove impurities, and achieve superior density & purity.

How Do Vacuum Furnace Systems Facilitate Accelerated Aging Tests For Sdss2507? Ensure Precision In Neutron Scattering

Learn how vacuum furnace systems enable accurate SDSS2507 aging tests by preventing oxidation and ensuring thermal stability at 475°C.

What Function Does A High-Temperature Muffle Furnace Serve For Ni/Co Catalysts? Transform Salts Into Active Metal Oxides

Learn how high-temp muffle furnaces activate nickel and cobalt catalysts through precise thermal decomposition and support bonding at 500 °C.

Why Is A High-Precision Gas Flow Control System Required For Vermiculite Heat Treatment? Ensure Perfect Atmosphere

Learn why precise gas flow control is vital for vermiculite reduction, ensuring stable chemical potential and repeatable phase transitions.

How Does The Strong Process Performance Of Vacuum Tube Furnaces Benefit Users? Unlock Superior Quality And Efficiency

Discover how vacuum tube furnaces enhance product quality, increase efficiency, and offer reliability for material science and industrial applications.

What Are The Advantages Of Using A Spark Plasma Sintering (Sps) System? Unlock High-Entropy Alloy Performance

Discover how SPS outperforms traditional hot-pressing by preserving nanocrystalline structures and achieving rapid densification in alloys.

How Are Muffle Furnaces And Vacuum Sealing Techniques Applied To Evaluate High-Entropy Alloys? Expert Stability Guide

Learn how muffle furnaces and vacuum sealing prevent oxidation and ensure precise thermal stability testing for high-entropy alloys (HEAs).

How Does An Oxidation-Reduction Furnace Function In Recycling Tungsten? Expert Material Recovery Guide

Learn how Oxidation-Reduction furnaces chemically deconstruct tungsten alloy scrap into high-purity renewable powder via precise thermal cycles.

Why Is A High-Vacuum Ultra-High Temperature Annealing Furnace Required For Studying Deformed Tungsten Single Crystals?

Discover why 2400°C temperatures and high-vacuum environments are essential for purifying tungsten crystals and preventing oxidation during study.

Why Must T91 Steel Ingots Undergo Long-Term Homogenization? Ensure High-Performance Microstructural Uniformity

Learn why T91 steel requires 24-hour homogenization at 1200°C to eliminate chemical segregation and stabilize rare earth inclusions.

How Does An Industrial Muffle Furnace Contribute To The Thermal Treatment Of Γ-Al2O3 Carriers? Optimize Phase Transition

Learn how industrial muffle furnaces enable precise 700°C calcination to transform boehmite into high-strength, porous γ-Al2O3 catalyst carriers.

What Is The Function Of Introducing 150 Pa Of Argon Gas Into A Furnace During The Vacuum Refining Of Am60 Magnesium Alloy?

Learn how a 150 Pa argon atmosphere suppresses magnesium evaporation and prevents oxidation during vacuum refining, ensuring high-purity, low-loss results.

How Is A Vacuum Sintering Furnace Used In The Metal Powder Metallurgy Industry? Achieve High-Density, Pure Metal Parts

Learn how vacuum sintering furnaces transform metal powders into strong, dense parts by preventing oxidation and contamination in powder metallurgy processes.

What Factors Contribute To The Strong Process Performance Of Vacuum Tube Furnaces? Unlock Precision And Purity In Heat Treatment

Explore how vacuum tube furnaces ensure superior process performance through atmospheric control, precision automation, and contamination prevention for high-purity materials.

What Are The Main Advantages Of Vacuum Tube Furnaces In The Market? Achieve Purity And Precision In Material Processing

Discover how vacuum tube furnaces prevent oxidation, enable reactive material work, and offer superior thermal control for high-quality outcomes in labs and production.

What Are Sealed Atmosphere Furnaces Called And What Are Their Features? Discover Precision Heat Treatment Solutions

Learn about atmosphere envelopes, their features like gas control for oxidation prevention, and how they enable precise material transformations in heat treatment.

What Are Inert Atmosphere Conditions? Achieve Purity And Control In Your Processes

Learn how inert atmospheres prevent oxidation and contamination in manufacturing, labs, and packaging. Discover the right gas for your application.

How Does Energy Efficiency Impact The Choice Of A Sintering Furnace? Lower Tco And Boost Sustainability

Learn how energy-efficient sintering furnaces reduce costs and environmental impact through advanced insulation, heating elements, and controls for better ROI.

What Is The Primary Role Of A Tubular Furnace In Industrial Production? Achieve Precise Thermal Processing For Superior Materials

Discover how tubular furnaces enable uniform heating, controlled atmospheres, and precise temperature ramping for sintering, annealing, and material synthesis in industries.

How Are Tubular Furnaces Used In Industrial And Small-Batch Production? Unlock Controlled Heat For Precision Results

Explore tubular furnace uses in annealing, sintering, CVD, and more for industrial and small-batch production with precise atmospheric control.

What Is The Temperature Range For Laboratory Type Furnaces? Find Your Ideal Heat Solution

Explore lab furnace temperature ranges from 600°C to 1800°C, with insights on heating elements, types, and selection tips for optimal performance.

What Is A Tubular Furnace And What Are Its Primary Uses? Essential For High-Temperature Precision And Uniformity

Explore tubular furnace uses in materials processing, chemical synthesis, and R&D for precise temperature control, uniform heating, and atmosphere management.

What Industrial Applications Do Muffle Furnaces Have In Heat Treating? Precision Solutions For High-Tech Industries

Discover muffle furnace uses in annealing, hardening, sintering, and more for contamination-free heat treatment in labs and small-batch production.

What Types Of Materials Can A Box Furnace Handle? Versatile Solutions For Metals, Ceramics, And More

Explore box furnace material compatibility for metals, ceramics, and advanced materials. Learn how temperature, atmosphere, and processes define suitability.

What Types Of Materials Can Be Processed Using Induction Heating? A Guide To Conductive & Non-Conductive Materials

Discover which materials work with induction heating, from metals and semiconductors to workarounds for non-conductive materials like ceramics and glass.

Why Specific Constant Temperature Holding Times For Nbc And Cr7C3? Achieve Stoichiometric Precision In Lab Synthesis

Learn why NbC and Cr7C3 require 1h and 0.5h holding times respectively to ensure full conversion and precise stoichiometry in solid-phase reactions.

Why Is High Temperature Control Precision Essential For Sic/Sic Composites? Master Microstructural Engineering

Discover why precise thermal regulation in PIP processes is vital for SiC/SiC composite strength, grain growth, and structural integrity.

What Is The Primary Function Of A High-Temperature Muffle Furnace For Zsm-5 Zeolite? Unlocking Pore Performance

Learn how high-temperature muffle furnaces activate ZSM-5 zeolite through calcination, template removal, and pore-system unveiling at 550°C.

What Role Does A Dual Porcelain Boat Layout Play Within A Tube Furnace? Enhance Ni-N-C Selenization With Spatial Control

Learn how a dual porcelain boat layout in a tube furnace optimizes Ni-N-C selenization through controlled vapor transport and spatial separation.

Why Is High-Temperature Homogenization Necessary For Refractory Alloy Thermal Expansion Tests? Ensure Data Precision.

Learn why homogenization is vital for refractory alloys to eliminate segregation, relieve stress, and ensure accurate thermal expansion data.

How Does The Controlled Cooling Environment Of A Melting Furnace Affect The Microstructure Of Cocumonial Alloy Ingots?

Learn how controlled cooling and eutectic solidification in high-temp furnaces create the nanoporous microstructure of CoCuMoNiAl alloy ingots.

Why Is A High-Precision Furnace Critical For Refractory Castables? Ensure Structural Integrity & Mineral Stability

Discover why high-precision programmed furnaces are essential for heating refractory castables to 800°C or 1100°C without structural failure.

Why Is A High-Temperature Tube Furnace Required For Annealing Repair After Dry Etching? Restoring Crystal Lattice

Learn how atmospheric compensation in a high-temperature tube furnace repairs cation vacancies and restores electrical performance after dry etching.

Why Is A Vacuum Annealing Furnace Required For Cu2Co1-Xnaxsns4 Films? Optimize Your Thin Film Crystallization

Learn how vacuum annealing prevents oxidation and promotes precise atomic diffusion for high-quality Cu2Co1-xNaxSnS4 thin film crystallization.

What Is The Primary Function Of A High-Temperature Muffle Furnace For Cerium Dioxide Precursors? Expert Calcination Tips

Learn how high-temperature muffle furnaces drive the oxidative decomposition and phase transformation of cerium precursors into cerium dioxide.

What Role Does A Vacuum Annealing Furnace Play In The Final Heat Treatment Of Ti-5Al-2.5Sn-0.2C Alloys? Master Carbon Management

Learn how vacuum annealing furnaces stabilize Ti-5Al-2.5Sn-0.2C alloys through stress relief, carbide precipitation, and grain boundary pinning.

What Is The Function Of The Induction Heating Furnace And Vacuum Pump System During Aln Crystal Preparation?

Learn how induction furnaces and high-vacuum systems (1x10^-4 Pa) control purity and eliminate oxygen during Aluminum Nitride alloy sintering.

What Are The Advantages Of Using A Vacuum Tube Furnace For Biomass Pyrolysis? Optimize Electrocatalyst Performance

Discover how vacuum tube furnaces enhance biomass-based electrocatalysts through atomic precision, graphitization, and active carbide formation.

What Is The Role Of A Magnesium Deoxidation Furnace? Ensure Ultra-Purity For Precise Metal Melting Heat Measurement

Learn how magnesium deoxidation furnaces remove residual oxygen to provide the ultra-high purity gas required for accurate thermal measurements.

Why Is Multiple Melting Required In A Vacuum Arc Furnace? Achieve Uniform Ni-Mn-Ga Shape Memory Alloys

Learn why multiple melting and flipping are essential for Ni-Mn-Ga alloys to eliminate chemical segregation and ensure phase stability.

Why Must Alloy Samples Be Sealed In Vacuum-Evacuated Fused Silica Containers During Diffusion Annealing Processes?

Learn why vacuum-sealed fused silica is essential for diffusion annealing at 1100 °C to prevent oxidation and ensure thermodynamic accuracy.

What Role Does A Vacuum-Controlled Tube Furnace Play In Ti2Aln Treatment? Master The Hexagonal Max Phase Transition

Learn how vacuum-controlled tube furnaces facilitate the 750°C phase transformation of Ti2AlN thin films while preventing oxidation and stress.

How Do Tube Resistance Furnaces Or High-Temperature Box Furnaces Ensure Material Quality During The Heat Treatment Of Fe60 Alloys?

Learn how tube and box furnaces ensure Fe60 alloy quality through precise 1473 K thermal cycling and argon atmospheric protection.

What Is The Role Of A Hydrogen Reduction Furnace In Rgo Synthesis? Achieve 10X Expansion & High Conductivity

Learn how industrial hydrogen reduction furnaces convert graphene oxide to high-quality RGO using precise vacuum and H2 control for 10x expansion.