Products High Temperature Furnaces Vacuum Furnace Small Vacuum Heat Treat and Tungsten Wire Sintering Furnace
Small Vacuum Heat Treat and Tungsten Wire Sintering Furnace

Vacuum Furnace

Small Vacuum Heat Treat and Tungsten Wire Sintering Furnace

Item Number : KT-VTW

Price varies based on specs and customizations


Vacuum degree
1.3*10^-1 Pascal
Heating element
Tungsten wire
Applications
Hard alloy sintering, Ceramic materials processing, Carbon fiber graphitization, Carbon and carbon composite sintering, Silicon carbide products sintering, Photoelectric coating materials processing, Refractory metals and alloy sintering
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Get Quote

Small Vacuum Tungsten Wire Sintering Furnace

Small vacuum tungsten wire sintering furnace details

Overview: Designed for Advanced Material Research

The Small Vacuum Tungsten Wire Sintering Furnace is a compact, experimental vacuum furnace meticulously engineered for universities and research institutes. It delivers the precision, reliability, and ease of use crucial for advanced material processing and experimental work.

Key Benefits for Your Laboratory:

  • Space-Saving & Mobile Design: Its vertical, integrated cabinet with moving wheels is perfect for labs with limited space. Quick-connect electrical connections further facilitate easy relocation and setup.
  • Superior Vacuum Integrity: Achieve outstanding experimental conditions. The CNC-welded shell, robust vacuum pipeline, and precision-polished inner surfaces (smooth finish better than Δ6) are verified by a helium mass spectrometer leak detector. This ensures a high vacuum degree (up to 1.3*10-1 Pascal, equivalent to 99.99987% argon purity) to minimize atmospheric contamination.
  • User-Friendly & Safe Operation: Streamline your experiments with an intuitive interface and fully automatic control for vacuum pumping, pressure increasing, and sintering. Comprehensive safety features, including a standard-made electric control cabinet, interlocking functions, over-temperature protection, automatic shut-off, and classified sound/light alarms, ensure secure and convenient operation.
  • Reliable & Efficient Performance: The electrically lifted furnace bottom ensures smooth, dependable operation while contributing to energy efficiency by reducing water consumption. High-quality electrical components (e.g., from Omron or Schneider) guarantee stable control and consistent results.

Versatile Applications

This furnace is highly versatile, supporting a wide array of high-temperature processes including:

  • Hard alloy sintering: Enhancing their strength and durability.
  • Ceramic materials processing: Ensuring their structural integrity and electrical properties.
  • Carbon fiber graphitization: Improving their conductivity and thermal stability.
  • Carbon and carbon composite sintering: Resulting in enhanced mechanical properties.
  • Silicon carbide products sintering: Valuable for products known for high hardness and wear resistance.
  • Photoelectric coating materials processing: Optimizing their optical and electrical performance.
  • Refractory metals and alloy sintering: Suitable for sintering materials like tungsten, molybdenum, tungsten-copper alloy, and other alloys in a vacuum or atmosphere at high temperatures.

Key Technical Advantages

  • High-Performance Processing: Delivers high-temperature capabilities with precise temperature control, ensuring consistent and reliable sintering, annealing, and brazing results.
  • Robust and Durable: Built with durable construction to withstand demanding laboratory environments, ensuring long-lasting performance and return on investment.
  • Advanced Material Compatibility: Expertly designed for fast and high-end sintering of a diverse range of materials, including metals, ceramics, nanomaterials, non-crystalline materials, composite materials, and functionally graded materials.
  • Simplified Maintenance & Troubleshooting: High-quality electrical components ensure stable control, while a classified sound and light alarm function simplifies troubleshooting, maximizing uptime.

Working Principle

The small vacuum tungsten wire sintering furnace is a resistance sintering furnace that utilizes tungsten wire as the heating element. The furnace body is made of high-temperature resistant materials and has a vacuum-tight structure. The working principle is to place the material to be sintered in the furnace chamber, evacuate the air inside the chamber to create a vacuum environment, and then pass a current through the tungsten wire to generate heat. The high temperature generated by the tungsten wire causes the material to undergo a series of physical and chemical changes, such as diffusion, thermal cracking, and chemical reactions, which promote the reorganization and recrystallization of the material at the microscopic level. This process results in the formation of a dense structure and excellent performance while preventing oxidation and pollution of the material.

Your Partner in Advanced Material Research

Leveraging exceptional R&D and in-house manufacturing, KINTEK provides diverse laboratories with advanced high-temperature furnace solutions. Our product line, including Muffle, Tube, Rotary Furnaces, Vacuum & Atmosphere Furnaces, and CVD/PECVD/MPCVD Systems, is complemented by our strong deep customization capability to precisely meet unique experimental requirements.

Ready to elevate your research with the Small Vacuum Tungsten Wire Sintering Furnace, or need a custom solution? Our experts are eager to assist. Contact us today to discuss your specific needs, request a quote, or explore our customization options.

FAQ

What Are The Main Applications Of A Vacuum Furnace?

Vacuum furnaces are primarily used for vacuum quenching (tempering, annealing) to achieve desired material properties, vacuum brazing for welding below the base metal's melting point, vacuum sintering to bond metal powder grains into parts, and vacuum plus magnetism for metal and magnetic material treatment. They are also widely used in semiconductor devices, optical thin films, functional coatings, nanomaterials, and other fields, providing important technical support for material preparation and functional improvement.

What Is An Atmosphere Furnace Used For?

Atmosphere furnaces are widely used in material processing, metal processing, semiconductor manufacturing, solar cell production, optical materials, ceramics and glass industry, electronic material manufacturing, and research and development of new energy materials.

What Is A Dental Furnace Used For?

A dental furnace is primarily used in dental laboratories for sintering dental ceramics, such as zirconia, to create high-quality dental restorations like crowns, bridges, and implants. It ensures precise temperature control and consistent results for durable and aesthetically pleasing prosthetics.

What Is A Vacuum Induction Furnace?

A vacuum induction furnace is a specialized heating device that melts metals in a vacuum environment using induction heating technology. It is designed to remove impurities and improve the quality of the melted metals by preventing oxidation and contamination.

What Are The Main Applications Of A Horizontal Vacuum Furnace?

Horizontal vacuum furnaces are primarily used for: 1. Annealing: Softening materials to improve ductility. 2. Sintering: Bonding particles to form solid structures. 3. Brazing: Joining materials using a filler metal. 4. Heat Treatment: Altering material properties through controlled heating and cooling. They are also used for heat treatment of metals and alloys, manufacturing electronic components, processing composite materials and ceramics, and sintering metals and ceramics.

What Are The Key Features Of A Vacuum Furnace?

A vacuum furnace heats materials, mostly metals, at extremely high temperatures with low pollution and high consistency. Materials can be loaded vertically or horizontally. Vacuum furnaces can have batch or continuous designs, depending on cooling medium, load size, temperature, and pressure. They come in hot wall and cold wall designs, with cold wall furnaces offering higher operating temperature ranges, faster heating and cooling, and greater temperature uniformity.

What Are The Key Features Of An Atmosphere Furnace?

The key features of an atmosphere box furnace include its ability to maintain a specific gas environment, such as inert gases (e.g., nitrogen, argon), reducing gases (e.g., hydrogen), or vacuum conditions, to prevent oxidation, contamination, or unwanted chemical reactions during heating. The furnace typically consists of a high-temperature-resistant box chamber, heating elements, and a gas supply system. Advanced models may include programmable temperature controllers, uniform heating zones, and safety interlocks to ensure operational reliability.

What Are The Key Features Of A Dental Furnace?

Key features of a dental furnace include precise temperature range and control, programmability, vacuum technology for contamination-free processing, efficient cooling systems, and user-friendly interfaces. Safety features like automatic shutdown, emergency stop buttons, and overheating protection are also essential.

What Are The Main Applications Of Vacuum Induction Furnaces?

Vacuum induction furnaces are widely used in industries such as aerospace, metallurgy, and materials research for processes like melting, sintering, heat treatment, and brazing of metals and alloys. They are particularly useful for producing high-purity metals and advanced materials.

What Are The Key Features Of A Horizontal Vacuum Furnace?

Key features include: 1. Heating materials at extremely high temperatures with low pollution and high consistency. 2. Capability to load materials vertically or horizontally. 3. Options for batch or continuous designs based on cooling medium, load size, temperature, and pressure. 4. Hot wall and cold wall designs, with cold wall furnaces offering higher operating temperature ranges, faster heating and cooling, and greater temperature uniformity. 5. Precise control over temperature, pressure, and atmosphere, integrating high-quality materials and advanced systems for durability, efficiency, and reliability.

How Does A Vacuum Furnace Work?

The working principle of a vacuum furnace involves removing air and gases from the chamber to create a vacuum, which prevents oxidation and contamination. Heating elements generate heat, and a temperature control system regulates the heating process to ensure precise and consistent results. The vacuum system pumps the furnace chamber to create a vacuum, and the heating element then heats the chamber while the temperature control system regulates heating speed and holding time, allowing materials to be heated under vacuum conditions.

How Does An Atmosphere Furnace Work?

A tube furnace generates heat through a heat source and transfers this heat to the heated workpiece or medium via the furnace tube. This process provides stable and uniform heating suitable for various industrial applications. The principle of sintering involves heating materials to high temperatures below their melting points, causing particles to bond and form a solid structure. Heat and sometimes pressure are applied to compact and densify materials, enhancing their mechanical and physical properties.

How Does A Dental Furnace Work?

A dental furnace works by applying controlled high temperatures to dental ceramics in a vacuum or controlled atmosphere environment. This process, known as sintering, bonds ceramic particles together to form strong, dense restorations. The furnace's advanced controls ensure uniform heating and cooling for consistent results.

How Does A Vacuum Induction Furnace Work?

The furnace operates by creating a vacuum in the chamber to remove air and gases, preventing oxidation. Induction heating is then used to melt the metals. This combination of vacuum and induction heating ensures a clean, controlled environment for high-quality metal processing.

How Does A Horizontal Vacuum Furnace Work?

The working principle involves: 1. Removing air and gases from the chamber to create a vacuum, which prevents oxidation and contamination. 2. Heating elements generate heat, and a temperature control system regulates the heating process to ensure precise and consistent results. 3. The vacuum system pumps the furnace chamber to create a vacuum, and the heating element heats the chamber while the temperature control system regulates heating speed and holding time, allowing materials to be heated under vacuum conditions.

What Are The Advantages Of Using A Vacuum Furnace?

The benefits of a vacuum furnace include precise temperature control within a small area, low contamination of the product by carbon, oxygen, and other gases, quick cooling (quenching) of the product, and computer-controlled processes to ensure metallurgical repeatability. Additionally, vacuum furnaces provide a highly pure processing environment, fast processing speed due to no need for atmosphere adjustment, and strong controllability of the processing process as it is not affected by the atmosphere.

What Are The Advantages Of Using An Atmosphere Furnace?

The advantages of an atmosphere furnace include strong environmental control capability by adjusting atmosphere components, lower cost compared to vacuum furnaces, and a wide range of applications suitable for various materials like metals and ceramics. Additionally, atmosphere tube furnaces offer precise temperature control, flexible atmosphere control, high heating efficiency, energy conservation and environmental protection, safe and reliable operation, wide applicability, and reasonable structural design.

What Are The Advantages Of Using A Dental Furnace?

The advantages of using a dental furnace include precise temperature and heating control, consistent and predictable results, time and cost savings by reducing the need for adjustments or remakes, and the ability to create various types of dental restorations. These features ensure high-quality, durable, and aesthetically pleasing dental prosthetics.

What Are The Advantages Of Using A Vacuum Induction Furnace?

Key advantages include: 1. Contamination-free processing due to the absence of oxygen and reactive gases. 2. Precise temperature control for consistent results. 3. Versatility in handling various materials and processes. 4. High efficiency with minimal heat loss. 5. Improved product quality by removing impurities.

What Are The Advantages Of Using A Horizontal Vacuum Furnace?

Advantages include: 1. Contamination-Free Environment: The vacuum eliminates oxygen and other reactive gases, preventing oxidation and contamination. 2. Precision: Temperature control systems ensure consistent and accurate heating. 3. Versatility: Suitable for a wide range of materials and processes. 4. Efficiency: Minimizes heat loss and energy consumption due to the vacuum environment. Additional benefits are controllable temperature range, uniform temperature between 1100-1500°C, low product contamination by gases, rapid quenching cooling, computer-controlled processes for metallurgical repeatability, and prevention of high-temperature oxidation. The vacuum environment also minimizes oxidation and decarburization for cleaner surfaces and material integrity.

What Types Of Materials Can Be Processed In A Vacuum Furnace?

Vacuum furnaces are primarily used for processing metals, including sintering, annealing, and brazing. They are also suitable for ceramics, composites, and other advanced materials, especially in applications requiring high purity and precise temperature control, such as semiconductor devices, optical thin films, and nanomaterials.

What Types Of Gases Can Be Used In An Atmosphere Furnace?

An atmosphere furnace can maintain specific gas environments such as inert gases (e.g., nitrogen, argon), reducing gases (e.g., hydrogen), or vacuum conditions to prevent oxidation, contamination, or unwanted chemical reactions during heating.

What Safety Features Should A Dental Furnace Have?

A dental furnace should include safety features such as over-temperature protection, automatic shut-off systems, emergency stop buttons, and overheating protection. These features ensure the safety of users and prevent damage to the equipment during operation.

What Types Of Vacuum Induction Furnaces Are Available?

Vacuum induction furnaces come in various designs including batch or continuous types, and hot wall or cold wall configurations. They can also be customized based on cooling medium, load size, temperature requirements, and pressure conditions to suit specific industrial or research needs.

What Types Of Materials Can Be Processed In A Horizontal Vacuum Furnace?

Horizontal vacuum furnaces are suitable for processing a variety of materials including metals, alloys, electronic components, composite materials, and ceramics. They are particularly effective for materials that require high-temperature treatments without oxidation or contamination.

What Is The Difference Between Hot Wall And Cold Wall Vacuum Furnaces?

Hot wall vacuum furnaces have the heating elements and insulation inside the vacuum chamber, while cold wall furnaces have these components outside the chamber. Cold wall furnaces offer higher operating temperature ranges, faster heating and cooling, and greater temperature uniformity compared to hot wall designs.

What Safety Features Are Available In Advanced Atmosphere Furnaces?

Advanced atmosphere furnaces may include programmable temperature controllers, uniform heating zones, and safety interlocks to ensure operational reliability. A program-controlled atmosphere furnace includes a protection system that monitors critical parameters such as furnace temperature and oxygen content. In case of any abnormalities, the system can automatically shut down or trigger an alarm to protect both the furnace and the samples inside.

What Types Of Dental Furnaces Are Available?

Dental furnaces come in various types, including vacuum porcelain sintering furnaces, zirconia sintering furnaces, and vacuum press furnaces. Some models offer rapid sintering capabilities, while others provide high-pressure or multi-functional processing for different dental ceramic materials.

Why Is Temperature Control Important In Vacuum Induction Furnaces?

Precise temperature control is crucial to ensure uniform heating, prevent material degradation, and achieve consistent results in processes like melting, sintering, or heat treatment. Advanced control systems in these furnaces maintain accurate temperatures throughout the process.

What Is The Temperature Range Of A Horizontal Vacuum Furnace?

Horizontal vacuum furnaces typically offer a controllable temperature range, with uniform temperatures achievable between 1100-1500°C. Some models can reach even higher temperatures, up to 2200°C or more, depending on the design and application requirements.

Can Vacuum Furnaces Be Customized For Specific Applications?

Yes, vacuum furnaces can be customized based on cooling medium, load size, temperature, and pressure requirements. They can be designed as batch or continuous systems and can be tailored for specific applications such as sintering, brazing, or heat treatment, with options for vertical or horizontal loading.

What Materials Can Be Processed In A Vacuum Induction Furnace?

These furnaces can process a wide range of materials including metals, alloys, ceramics, and composites. They are particularly effective for materials that require high purity or are sensitive to oxidation, such as titanium, nickel-based alloys, and rare earth metals.

How Does The Vacuum Environment Benefit Material Processing?

The vacuum environment eliminates oxygen and other reactive gases, preventing oxidation and contamination of materials. It also allows for better control of the processing atmosphere, reduces heat loss, and enables higher temperature operations without material degradation.
View more faqs for this product

4.8

out of

5

This furnace is a game-changer! Super efficient and delivers consistent results every time. Worth every penny!

Elara Voss

4.7

out of

5

Fast delivery and top-notch quality. The precision of this furnace is unmatched. Highly recommend!

Rafael Mendoza

4.9

out of

5

Incredible value for money. The build is robust, and the technology is cutting-edge. Love it!

Anika Patel

4.8

out of

5

Durable and reliable. Perfect for our lab needs. The vacuum heat treat feature is flawless.

Lars Bjornsson

4.9

out of

5

Impressed by the speed and accuracy. This furnace has significantly boosted our productivity.

Yuki Tanaka

4.7

out of

5

Great investment! The tungsten wire sintering works like a charm. Very satisfied with the purchase.

Mateo Silva

4.9

out of

5

Exceptional performance and sleek design. It’s a powerhouse in a compact size. Love it!

Zara Al-Mansoor

4.8

out of

5

Outstanding quality and fast shipping. This furnace exceeds all expectations. A must-have!

Nikolai Petrov

4.7

out of

5

The perfect blend of technology and durability. It’s a workhorse that never disappoints.

Sienna O'Connor

4.9

out of

5

Absolutely brilliant! The heat treat process is so precise. Couldn’t be happier with this purchase.

Javier Rios

4.8

out of

5

Superb craftsmanship and advanced features. This furnace is a dream to work with. Highly recommend!

Freya Larsen

4.9

out of

5

Fantastic product! The speed and efficiency are unmatched. A true gem for any lab or workshop.

Arjun Kapoor

Products

Small Vacuum Heat Treat and Tungsten Wire Sintering Furnace

PDF Format Catalog
Download

Category

Vacuum Furnace

PDF Format Catalog
Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Molybdenum Vacuum Heat Treat Furnace

Molybdenum Vacuum Heat Treat Furnace

High-performance molybdenum vacuum furnace for precise 1400°C heat treatment. Ideal for sintering, brazing, and crystal growth. Durable, efficient, and customizable.

600T Vacuum Induction Hot Press Vacuum Heat Treat and Sintering Furnace

600T Vacuum Induction Hot Press Vacuum Heat Treat and Sintering Furnace

600T Vacuum Induction Hot Press Furnace for precise sintering. Advanced 600T pressure, 2200°C heating, vacuum/atmosphere control. Ideal for research & production.

Vacuum Heat Treat Sintering Furnace Molybdenum Wire Vacuum Sintering Furnace

Vacuum Heat Treat Sintering Furnace Molybdenum Wire Vacuum Sintering Furnace

KINTEK's Vacuum Molybdenum Wire Sintering Furnace excels in high-temperature, high-vacuum processes for sintering, annealing, and material research. Achieve precise 1700°C heating with uniform results. Custom solutions available.

9MPa Air Pressure Vacuum Heat Treat and Sintering Furnace

9MPa Air Pressure Vacuum Heat Treat and Sintering Furnace

Achieve superior ceramic densification with KINTEK's advanced air pressure sintering furnace. High-pressure up to 9MPa, precise 2200℃ control.

Vacuum Heat Treat Sintering and Brazing Furnace

Vacuum Heat Treat Sintering and Brazing Furnace

KINTEK Vacuum Brazing Furnaces deliver precision, clean joints with superior temperature control. Customizable for diverse metals, ideal for aerospace, medical, and thermal applications. Get a quote!

Vacuum Heat Treat Furnace with Ceramic Fiber Liner

Vacuum Heat Treat Furnace with Ceramic Fiber Liner

KINTEK's Vacuum Furnace with Ceramic Fiber Lining offers precise high-temperature processing up to 1700°C, ensuring uniform heat distribution and energy efficiency. Ideal for labs and production.

Vacuum Hot Press Furnace Machine Heated Vacuum Press Tube Furnace

Vacuum Hot Press Furnace Machine Heated Vacuum Press Tube Furnace

Discover KINTEK's advanced Vacuum Tube Hot Press Furnace for precise high-temperature sintering, hot pressing, and material bonding. Customizable solutions for labs.

Vacuum Induction Melting Furnace and Arc Melting Furnace

Vacuum Induction Melting Furnace and Arc Melting Furnace

Explore KINTEK's Vacuum Induction Melting Furnace for high-purity metal processing up to 2000℃. Customizable solutions for aerospace, alloys, and more. Contact us today!

Laboratory Quartz Tube Furnace RTP Heating Tubular Furnace

Laboratory Quartz Tube Furnace RTP Heating Tubular Furnace

KINTEK's RTP Rapid Heating Tube Furnace delivers precise temperature control, rapid heating up to 100°C/sec, and versatile atmosphere options for advanced lab applications.

2200 ℃ Graphite Vacuum Heat Treat Furnace

2200 ℃ Graphite Vacuum Heat Treat Furnace

2200℃ Graphite Vacuum Furnace for high-temperature sintering. Precise PID control, 6*10⁻³Pa vacuum, durable graphite heating. Ideal for research & production.

Electric Rotary Kiln Small Rotary Furnace for Activated Carbon Regeneration

Electric Rotary Kiln Small Rotary Furnace for Activated Carbon Regeneration

Electric Activated Carbon Regeneration Furnace by KINTEK: High-efficiency, automated rotary kiln for sustainable carbon recovery. Minimize waste, maximize savings. Get a quote!

Vacuum Heat Treat Sintering Furnace with Pressure for Vacuum Sintering

Vacuum Heat Treat Sintering Furnace with Pressure for Vacuum Sintering

KINTEK's Vacuum Pressure Sintering Furnace offers 2100℃ precision for ceramics, metals, and composites. Customizable, high-performance, and contamination-free. Get a quote now!

Laboratory Muffle Oven Furnace with Bottom Lifting

Laboratory Muffle Oven Furnace with Bottom Lifting

Boost lab efficiency with KT-BL Bottom Lifting Furnace: precise 1600℃ control, superior uniformity, and enhanced productivity for material science and R&D.

1800℃ High Temperature Muffle Oven Furnace for Laboratory

1800℃ High Temperature Muffle Oven Furnace for Laboratory

KINTEK Muffle Furnaces: Precision 1800°C heating for labs. Energy-efficient, customizable, with PID control. Ideal for sintering, annealing, and research.

1400℃ Muffle Oven Furnace for Laboratory

1400℃ Muffle Oven Furnace for Laboratory

KT-14M Muffle Furnace: Precision 1400°C heating with SiC elements, PID control, and energy-efficient design. Ideal for labs.

1200℃ Muffle Oven Furnace for Laboratory

1200℃ Muffle Oven Furnace for Laboratory

KINTEK KT-12M Muffle Furnace: Precision 1200°C heating with PID control. Ideal for labs needing rapid, uniform heat. Explore models & customization options.

High Temperature Muffle Oven Furnace for Laboratory Debinding and Pre Sintering

High Temperature Muffle Oven Furnace for Laboratory Debinding and Pre Sintering

KT-MD Debinding & Pre-Sintering Furnace for ceramics - precise temperature control, energy-efficient design, customizable sizes. Boost your lab efficiency today!

2200 ℃ Tungsten Vacuum Heat Treat and Sintering Furnace

2200 ℃ Tungsten Vacuum Heat Treat and Sintering Furnace

2200°C Tungsten Vacuum Furnace for high-temperature materials processing. Precise control, superior vacuum, customizable solutions. Ideal for research & industrial applications.

High Performance Vacuum Bellows for Efficient Connection and Stable Vacuum in Systems

High Performance Vacuum Bellows for Efficient Connection and Stable Vacuum in Systems

KF ultra-high vacuum observation window with high borosilicate glass for clear viewing in demanding 10^-9 Torr environments. Durable 304 stainless steel flange.