What Is The Primary Purpose Of Drying And Calcination In Nickel Laterite Ore Pretreatment? Optimize Your Smelting Efficiency

Learn how drying and calcination remove 40% moisture and decompose minerals in nickel laterite ore to slash energy costs and boost smelting speed.

What Are The Material Requirements For The Core Reaction Chambers? Ensure Pure Pyrolysis With Quartz And Corundum

Learn why high-purity quartz and corundum are essential for oily sludge pyrolysis, offering thermal stability and chemical inertness.

How Is An Industrial High-Temperature Furnace Utilized For Beta-Quench Treatment Of Zr-2.5%Nb Alloys?

Learn how industrial furnaces facilitate phase transformation in Zr-2.5%Nb alloys through precise 1000°C heating and dwell time for beta-quenching.

Why Is The Heat Treatment Process Using A Tube Furnace Essential In The Preparation Of Mn7Co3Ce1Ox Catalysts?

Learn how 400°C tube furnace heat treatment engineers type-II heterojunctions and enhances redox activity in Mn7Co3Ce1Ox photothermal catalysts.

What Is The Significance Of High-Temperature Furnace Processing For Biomass Emi Shielding? Optimize Carbon Conductivity

Learn how high-temperature furnaces transform biomass into EMI shielding films through carbonization, graphitization, and $sp^2$ network formation.

How Does A High-Temperature Tube Furnace Facilitate The Sintering Process Of Modified Graphite Felt? Precision Control

Learn how high-temperature tube furnaces enable precise sintering of modified graphite felt through thermal decomposition and atmosphere control.

What Is The Process Of Vacuum Heat Treatment? Achieve Superior Metallurgical Properties

Learn the step-by-step vacuum heat treatment process for eliminating oxidation, ensuring uniform heating, and achieving a bright, clean finish.

What Types Of Heating Elements Are Used In Ceramic Dental Furnaces? Choose The Right Element For Your Dental Lab

Explore heating elements like Kanthal, Nichrome, MoSi2, and SiC for ceramic dental furnaces. Learn how to select based on temperature needs for porcelain firing or zirconia sintering.

What Is A Box Furnace And What Are Its Main Characteristics? Discover Versatile Batch Heating Solutions

Learn about box furnaces: their design, precise temperature control, and applications in heat treatment, sintering, and lab testing for reliable batch processing.

What Are The Research Applications Of Box Furnaces? Essential For Material Synthesis And Heat Treatment

Explore how box furnaces enable precise heat treatment, material synthesis, and analysis in metallurgy, ceramics, and materials science research.

Why Is A High-Temperature Tube Furnace Required For Lnmo Synthesis? Achieve Precise Fd-3M Spinel Structures

Learn why high-temperature tube furnaces are essential for LNMO synthesis, ensuring precise Fd-3m structure and uniform LALZO coating distribution.

What Are The Advantages Of Box Furnaces In Terms Of Versatility? Unlock Flexibility For Diverse Material Processing

Explore how box furnaces offer superior versatility with large chambers, uniform heating, and batch processing for industrial and research applications.

What Comprises The Working Chamber Of A Box Type Resistance Furnace? Discover The Core Components For Efficient High-Temp Operations

Learn about the key components of a box furnace's working chamber, including the hearth, heating elements, insulation, and control systems for precise thermal management.

Why Is A Box Resistance Furnace Utilized For The Homogenization Annealing Of Alloy Micro-Wires? Key Benefits Explained

Learn why box resistance furnaces are essential for homogenization annealing, eliminating chemical segregation, and preventing wire breakage.

What Are Some Customizable Features Of Muffle Furnaces For Dental Applications? Enhance Precision For Crowns And Bridges

Explore customizable muffle furnace features like temperature control and heating elements for superior dental restorations, ensuring consistent quality and efficiency.

Why Are Laboratory Furnaces Considered Essential In Industrial And Scientific Applications? Unlock Precision And Control For Your Materials

Discover why laboratory furnaces are vital for precise temperature control, atmosphere management, and high-temperature processing in industries and research.

How Do Custom Vacuum Furnaces Address Industry-Specific Challenges? Tailored Solutions For Aerospace, Medical & Energy

Discover how custom vacuum furnaces solve industry challenges with precise temperature control, purity, and quenching for aerospace, medical, and energy applications.

How Does An Industrial High-Temperature Resistance Furnace Ensure Borosilicate Fiber Quality? Master Thermal Precision

Learn how 1000°C thermal regulation and uniform viscosity gradients ensure structural integrity during borosilicate optical fiber drawing.

What Is The Function Of A High-Temperature Annealing Furnace For Al-7075? Optimize Ductility And Microstructure

Learn how high-temperature annealing furnaces at 415°C optimize Al-7075 alloy bars for severe plastic deformation by relieving stress and enhancing plasticity.

How Is A Muffle Furnace Utilized In The Two-Stage Calcination For C3N4 Nanosheets? Precision Thermal Synthesis Guide

Learn how muffle furnaces enable two-stage calcination of melamine into C3N4 nanosheets through controlled polymerization and thermal exfoliation.

What Furnace Features Ensure High-Quality Firing? Achieve Uniform Sintering & Superior Results

Discover key furnace technologies like QTK muffle design, infrared predrying, and precise temperature control for uniform sintering and crack-free results.

What Are The Temperature And Chamber Size Options For Vacuum Muffle Furnaces? Find Your Perfect Fit For High-Temp Processes

Explore vacuum muffle furnace specs: 1200°C or 1500°C max temperatures, 1.5L to 31L chamber sizes, ideal for sintering, brazing, and annealing in controlled atmospheres.

What Is The Function Of The Laboratory Furnace? Master Material Transformation With Precision Heating

Explore the core functions of lab furnaces: heat treatment, sintering, calcining, and annealing. Learn how to choose the right technology for your material.

What Materials Are Commonly Used For The Heating Element In Tubular Furnaces? Choose The Best For Your High-Temp Needs

Explore common heating element materials like Kanthal, Nichrome, SiC, and MoSi2 for tubular furnaces, their temperature ranges, and atmosphere compatibility.

What Is The Firing Temperature For Sintering? A Guide To Material-Specific Ranges

Sintering temperature varies by material: 800–900°C for clays, 1,400–1,600°C for zirconia. Learn how to choose the right range for your application.

What Critical Process Conditions Does A High-Temperature Vacuum Furnace Provide For Mn2Alb2? Mastering Mab Synthesis

Learn how high-temperature vacuum furnaces enable Mn2AlB2 synthesis through precise 1200°C thermal control and argon atmospheric protection.

Why Is Precision Drying Equipment Necessary For Porous Mullite Ceramic Skeletons? Prevent Cracks & Ensure Integrity

Learn how precision drying at 50 °C prevents micro-cracks and deformation in porous mullite ceramics by managing capillary pressure effectively.

What Are The Functional Advantages Of Utilizing A High-Temperature Vertical Tube Quartz Reactor For Mos2/Rgo Pyrolysis?

Discover how vertical tube reactors enable rapid pyrolysis, localized pressure, and covalent bonding for superior MoS2/rGO composite synthesis.

What Chemical Role Does A Tubular Furnace Play During The Carbonization Of Si@Sn@C? Unlock Advanced Material Synthesis

Learn how tubular furnaces enable H2 reduction of tin and argon-shielded carbonization to create high-performance Si@Sn@C composite architectures.

What Are The Benefits Of Using A High-Temperature Vacuum Furnace For The Annealing Of Znseo3 Nanocrystals?

Unlock superior crystallinity and chemical purity in ZnSeO3 nanocrystals with high-temp vacuum annealing at 800°C–1000°C.

How Do Laboratory High-Temperature Furnaces Facilitate The Control Of Nano-Scale Tic And Vc Precipitates? | Kintek

Learn how high-temperature furnaces regulate cooling and annealing to achieve the Baker-Nutting relationship in TiC and VC carbide precipitation.

What Is The Role Of A Laboratory High-Temperature Muffle Furnace In The Carbonization Of Sunflower Seed Husks?

Learn how high-temperature muffle furnaces drive biomass carbonization through stable thermal fields and controlled pyrolysis for activated carbon.

Why Is A Continuous Argon Flow Necessary During The Thermal Treatment Of Graphite? Achieve 2400 °C Ultra-Deep Purification

Learn why continuous argon flow is critical at 2400 °C to prevent graphite oxidation and drive the kinetic removal of metallic impurities.

What Is The Role Of A Muffle Furnace In The Synthesis Of Pti/Licl? Achieve High-Crystallinity Poly(Triazine Imide)

Learn how a muffle furnace enables molten salt synthesis of PTI/LiCl through precise 470°C temperature control and programmed cooling rates.

What Is The Primary Function Of A Tube Furnace For Rebco Tapes? Find Critical 175°C Thresholds

Learn how tube furnaces determine the annealing temperature threshold for REBCO superconducting tapes by testing thermal and atmospheric stability.

Why Is A Multi-Zone Tube Furnace Required For Tcvd? Optimize Thermal Management For Precursors

Learn how multi-zone tube furnaces manage disparate sublimation points and temperature gradients to ensure high-quality TCVD material synthesis.

Why Is A High-Temperature Tube Furnace Required For Lk-99 Sintering? Achieve Precise Superconductor Phase Transformation

Learn why high-temperature tube furnaces are vital for LK-99 synthesis, providing the 925°C stability needed for complex solid-state reactions.

What Are The Essential Functional Requirements For A Tube Furnace Used In The Biomass Activated Carbon Activation Process?

Discover the critical functional requirements for biomass activation, including 1050°C control, inert gas isolation, and programmable profiles.

Why Is A High-Precision High-Temperature Furnace Required For Chemical Activation? Ensure Superior Carbon Quality

Learn why precise thermal control is critical for activated carbon production, from etching pore structures to managing atmosphere and consistency.

What Are The Specific Roles Of A High-Temperature Tube Furnace During The Two-Stage Heat Treatment Of Bn@Pyc Aerogels?

Discover how high-temperature tube furnaces act as ceramicization reactors and CVD chambers to synthesize high-performance BN@PyC aerogels.

Why Must A Tube Furnace Be Equipped With A Vacuum Pump And Argon System? Sinter High-Purity Al-Si Nanocomposites

Learn why vacuum and argon systems are vital for sintering Al-Si alloys to prevent oxidation and ensure strong, defect-free material bonding.

Why Are Silicon Carbide (Sic) Heating Elements And Recrystallized Alumina Tubes Used In Vertical Tube Furnaces?

Learn why SiC elements and alumina tubes are essential for phase equilibrium research, offering thermal stability up to 1750°C and airtightness.

What Role Does A Tube High-Temperature Furnace Play In The Synthesis Of Nano Carbon Spheres? Unlock Sp2 Hybridization

Learn how tube furnaces enable the synthesis of nano carbon spheres from biomass through precise atmosphere control and high-heat graphitization.

How Does A High-Temperature Tube Furnace Facilitate The Pyrolysis Stage In Fenc Catalysts? Precision Thermal Processing

Learn how tube furnaces enable FeNC catalyst pyrolysis through nitrogen protection, volatile purging, and precise coordination of Fe-Nx sites.

How Does Treatment In A High-Temperature Tube Furnace Affect Tiox@C Precursors? Engineering Oxygen Vacancies

Learn how high-temperature thermal treatment in a reducing atmosphere creates Ti3+ defects and oxygen vacancies in TiOx@C precursors.

How Does An Industrial-Grade High-Temperature Vertical Furnace Contribute To The Homogenization Annealing Of Magnetocaloric Materials?

Learn how high-temperature vertical furnaces enable precise solid-phase reactions and peritectic transformations to enhance magnetocaloric phases.

What Is The Objective Of Calcining Catalyst Precursors? Achieve Peak Stability With Rotary Tube Furnaces

Learn why calcining catalyst precursors at 800°C is vital for P123 removal, MgAl2O4 spinel formation, and structural stabilization.

What Is The Primary Role Of A Tube Furnace In The Preparation Of Biochar? Master Precise Pyrolysis Controls

Learn how tube furnaces act as precision reactors for biochar, enabling controlled pyrolysis through atmospheric and thermal regulation.

How A High-Vacuum Brazing Furnace Enhances Cumnni Thin Film Piezoresistivity Through Precision Annealing

Learn how high-temperature vacuum annealing at 400°C optimizes CuMnNi film microstructure to boost the piezoresistive coefficient and performance.

What Is The Purpose Of Maintaining A Specific Argon Flow In A Tube Furnace? Optimize Lfp/C Composite Synthesis

Learn why precise argon flow is vital for LFP/C calcination to prevent oxidation and ensure a conductive carbon coating for battery performance.

How Do Industrial-Grade Tube Furnaces Facilitate The Preparation Of High-Stability Perovskites? Enhance Phase Purity

Learn how industrial tube furnaces use thermal precision and vacuum control to create high-stability perovskites via vapor deposition.

How Does A Precision Temperature-Controlled Furnace Facilitate The Long-Term Aging Treatment Of Invar 36?

Learn how precision furnaces stabilize Invar 36 through a 24-hour 100°C aging cycle to eliminate residual stress and ensure a low CTE.

In Gas-Phase Aluminizing, How Do High-Temperature Furnaces Facilitate The Formation Of The Β-Nial Phase?

Discover how precise 1050°C furnace environments drive aluminum diffusion and β-NiAl phase formation for superior oxidation resistance.

Why Is A Tube Furnace Required For The Heat Treatment Of Carbon Fiber Cloth? Master Surface Activation

Learn how tube furnaces provide the precise 240°C thermal control needed to activate carbon fiber substrates for high-performance supercapacitors.

What Is The Necessity Of Preheating Reinforcement Materials? Eliminate Defects In Aluminum Alloys

Learn why preheating iron oxide and cobalt at 450°C is essential for moisture removal and preventing porosity in aluminum alloys.

What Is The Function Of High-Temperature Sintering Furnaces In The Densification Of Ga2O3:Er Targets?

Learn how high-temperature sintering furnaces at 1450°C drive atomic diffusion and pore elimination to create dense Ga2O3:Er semiconductor targets.

How Does A High-Temperature Muffle Furnace Facilitate The Conversion Of Precursors? Unlock Peak Catalytic Performance

Learn how high-temperature muffle furnaces drive calcination, remove organic ligands, and optimize mixed metal oxides for catalytic applications.

How Is A Muffle Furnace Utilized For Defect Engineering In Delta-Mno2? Precision Thermal Treatment For Optimal Defects

Learn how muffle furnaces engineer oxygen vacancies in delta-MnO2 at 400°C to enhance conductivity and electrochemical performance.

What Role Does A Laboratory Muffle Furnace Play In The Industrial Analysis Of Plastic Waste? Optimizing Pyrolysis Yield

Learn how muffle furnaces enable proximate analysis of plastic waste to quantify volatile matter, fixed carbon, and ash content for recycling.

What Are The Advantages Of An Atmosphere Protection Box Furnace? Achieve Scale-Free, High-Precision Metal Annealing

Learn how atmosphere protection furnaces prevent oxidation and decarburization during metal annealing, saving time on post-processing and pickling.

What Is The Function Of A Tube Furnace In Palladium Nanonetwork Pretreatment? Unlock High Ductility And Zero Oxidation

Learn how high-temperature tube furnaces at 600°C in helium atmospheres release stress and reduce grain boundaries in palladium nanonetworks.

Why Is Dual Heat Treatment Required For Sno2 Nanoparticles? Optimize Oxidation For Superior Performance

Learn why using an industrial oven and muffle furnace is essential for SnO2 oxidation, moisture removal, and lattice rearrangement.

How Are Muffle Furnaces And Vacuum Sealing Techniques Applied To Evaluate High-Entropy Alloys? Expert Stability Guide

Learn how muffle furnaces and vacuum sealing prevent oxidation and ensure precise thermal stability testing for high-entropy alloys (HEAs).

How Does The Controlled Atmosphere Within A High-Temperature Tube Furnace Protect Al-Cr-Cu-Fe-Mn-Ni Alloys? Key Insights

Learn how 90% He/10% H2 atmospheres prevent oxidation and enable atomic diffusion in high-entropy Al-Cr-Cu-Fe-Mn-Ni alloys during sintering.

What Physical Characteristics Of High-Precision Heating Equipment Are Used In Cse Selenium Recycling?

Learn how controlled thermal fields, vacuum environments, and 1cm spacing optimize selenium recovery through Close-Spaced Evaporation (CSE).

What Role Does A Muffle Furnace Play In G-C3N4 Calcination? Master Precision Thermal Polycondensation

Learn how a muffle furnace drives deamination and polymerization at 550°C to create high-performance g-C3N4 nanosheets.

What Role Does A High-Temperature Electric Furnace Play In The Conversion Of Raw Kaolin Into Metakaolin? Expert Guide

Learn how high-temperature electric furnaces drive kaolin dehydroxylation and amorphization to create high-reactivity metakaolin for catalysts.

How Does The Performance Of A High-Temperature Sintering Furnace Affect Xpynt–Pint Ceramics? Key To Peak Properties

Learn how furnace precision and thermal uniformity optimize the densification, grain growth, and piezoelectric constants of xPYNT–PINT ceramics.

What Is The Purpose Of A 1400°C Heat Treatment For Porous Tungsten? Essential Steps For Structural Reinforcement

Learn how 1400°C vacuum heat treatment strengthens porous tungsten skeletons through atomic diffusion and solid solution formation to prevent collapse.

How Does A High-Temperature Laboratory Furnace Facilitate The Pressureless Sintering (Pls) Of Silicon Nitride Ceramics?

Learn how high-temperature furnaces enable silicon nitride sintering through liquid-phase transformation and precise nitrogen atmosphere control.

Why Are High-Precision Box Experimental Furnaces Necessary For Fecral Overlay Research? Master Thermal Aging Precision

Discover why high-precision box furnaces are essential for simulating thermal aging and verifying hardness evolution in FeCrAl overlay layers.

Why Are High-Temperature Quenching Furnaces Required For Tungsten Alloys? Unlock Workability And Stress Relief

Learn why high-temp quenching and water cooling are vital for tungsten alloys to eliminate stress and restore ductility for cold deformation.

What Are The Technical Advantages Of A Zero-Reforming Vertical Furnace? Revolutionize Green Dri Production Today

Discover how Zero-reforming Vertical Furnaces eliminate carbon deposition and optimize green DRI production through internal thermal reforming.

How Does An Industrial Muffle Furnace Facilitate The Chemical Activation Of Clay? Unlock High-Performance Zeolites

Learn how industrial muffle furnaces use precise 900°C thermal energy to transform clay into reactive zeolite catalyst frameworks.

What Is The Function Of An Alumina Boat During High-Temperature Activation Of Porous Carbon? Durable Lab Solutions

Learn how alumina boats provide inert, high-strength containment for corrosive porous carbon activation at temperatures up to 900°C.

What Is The Function Of A Thermal Oxidation Furnace In Mems Growth? Create High-Quality Passivation Layers

Learn how thermal oxidation furnaces grow 1μm SiO2 films at 1200°C to provide etching masks and passivation for MEMS pressure sensors.

What Are The Technical Requirements For A Tube Furnace In Nitrogen-Doping? Essential Specs For Metal Oxide Processing

Learn the essential tube furnace requirements for nitrogen-doping binary metal oxides, focusing on atmosphere control and 400°C thermal stability.

How Does A Vacuum High-Temperature Furnace Ensure Structural Stability? Unlock Precise Layered Porous Carbon Synthesis

Learn how vacuum high-temperature furnaces prevent oxidation and ensure the structural stability of porous carbon through precise atmosphere control.

What Role Does A High-Temperature Box Furnace Play In Fto Thin Film Pda? Optimize Your Optoelectronic Performance

Learn how high-temperature box furnaces drive grain growth and lattice substitution to enhance FTO thin film conductivity and transparency.

Why Is High-Purity Nitrogen Introduced Into The Tga Furnace During Moxa Floss Studies? Ensure Precise Thermal Analysis

Learn why high-purity nitrogen is essential for TGA moxa floss studies to prevent oxidation and ensure accurate pyrolysis and kinetic data.

What Function Does A High-Temperature Muffle Furnace Serve For Ni/Co Catalysts? Transform Salts Into Active Metal Oxides

Learn how high-temp muffle furnaces activate nickel and cobalt catalysts through precise thermal decomposition and support bonding at 500 °C.

How Do Digital Technical Summaries Assist The Scientific Community? Unlocking Lab High-Temp Furnace Insights

Learn how digital technical summaries bridge the gap between complex engineering specs and practical research applications for lab furnaces.

What Is The Purpose Of A High-Temperature Calcination Furnace In Sol-Gel? Achieve High Purity And Crystallinity

Learn how high-temperature calcination furnaces purify materials, drive crystallization, and remove organic precursors in the Sol-Gel process.

How Does Extending The Duration Of High-Temperature Constant Phase Affect Iron Grain Growth? Maximize Zinc Extraction

Learn how extended high-temperature phases promote iron grain growth to bridge impurities and achieve >97.44% zinc recovery in vacuum environments.

Why Is A High-Temperature Box Resistance Furnace Required For The 700°C Calcination Of Nife2O4 Nanopowder?

Learn why a box resistance furnace is vital for NiFe2O4 calcination, ensuring spinel phase transformation, purity, and optimal magnetic properties.

What Is The Core Function Of A High-Temperature Tube Furnace In Pb Sa/Osc Construction? Precision Atomic Engineering

Learn how high-temperature tube furnaces enable in-situ pyrolysis to create stable, super-coordinated single-atom catalysts (Pb SA/OSC).

What Is The Significance Of 1200 °C In Zro2:Ti Synthesis? Unlock Phase Purity In High-Performance Ceramics

Learn why a precise 1200 °C constant temperature is critical for synthesizing single-phase monoclinic ZrO2:Ti ceramics without impurities.

Why Is A Secondary High-Temperature Activation In A Tubular Furnace Required? Unlock Peak Catalyst Performance

Learn how secondary high-temperature activation transforms metal precursors into stable oxides to maximize catalyst activity and durability.

What Is The Role Of A High-Temperature Tube Furnace In Copper Alloy Homogenization? Enhance Material Ductility

Learn how high-temperature tube furnaces eliminate dendritic segregation in copper alloys through precise thermal control and argon protection.

Why Is An Industrial-Grade High-Temperature Sintering Furnace Required For The Production Of Multi-Channel Ceramic Membrane Supports? Key Roles In Material Transformation

Learn why 1500°C sintering is critical for multi-channel ceramic supports, ensuring mechanical strength, pore architecture, and chemical resistance.

How Does A High-Precision Box Muffle Furnace Ensure Alumina Ceramic Performance? Master Sintering Control

Learn how high-precision box muffle furnaces control grain growth and thermal uniformity to optimize alumina ceramic strength and microstructure.

What Is The Purpose Of Using A Pid Controller To Drive A Heating Furnace? Master Thermal Kinetics Precision

Learn why PID controllers are vital for hydrogen release experiments, ensuring precise heating rates and stable temperatures for accurate data.

What Roles Do Inert Gases Like Argon Or Helium Play When Processing Molten Stainless Steel? Enhance Alloy Composition

Learn how inert gases create a vapor-shielding effect to suppress evaporation, maintain alloy composition, and protect high-temperature furnaces.

Why Use Multi-Stage Temperature Control For Rebco Pyrolysis? Prevent 75% Shrinkage Cracks And Ensure Film Density

Learn why precise multi-stage heating is vital for REBCO film pyrolysis to manage 75% volume contraction and prevent macroscopic structural defects.

What Is The Function Of A High-Temperature Vacuum Annealing Furnace? Optimize Post-Weld Titanium Alloy Treatment

Discover how vacuum annealing furnaces eliminate welding stress and regulate phase transformations in titanium alloys for maximum fatigue strength.

How Does A High-Temperature Sintering Furnace Ensure Structural Integrity? Expert Thermal Management Guide

Learn how precise heating rates and uniform thermal fields in sintering furnaces prevent cracking and ensure 0.27% porosity in phosphate glass.

Why Are High-Temperature Vacuum Or Atmosphere Furnaces Used For Annealing Metal Silicide? Unlock Peak Thermal Stability

Learn how high-temperature vacuum and atmosphere furnaces validate thermal stability and optimize microstructures for metal silicide metamaterials.

Why Is An Argon Atmosphere Protection Critical During The Selenization Of Coo/Cose? Key To High-Purity Heterostructures

Learn why argon is essential for CoO/CoSe heterostructure synthesis: preventing oxidation and ensuring precise selenization in tube furnaces.

What Is The Role Of A Laboratory Tube Furnace In The Heat Treatment Of Zr-2.5%Nb Pressure Tube Samples? (550°C-800°C)

Learn how laboratory tube furnaces drive microstructural evolution and grain transformation in Zr-2.5%Nb samples for mechanical anisotropy studies.

Why Is It Necessary To Use A Preheating Furnace For Sic And B4C? Ensure Safety And Quality In Magnesium Composites

Learn why preheating SiC and B4C particles is essential to prevent melt splashing, reduce porosity, and improve wettability in magnesium composites.