Products High Temperature Furnaces CVD & PECVD Furnace Inclined Rotary Plasma Enhanced Chemical Deposition PECVD Tube Furnace Machine
Inclined Rotary Plasma Enhanced Chemical Deposition PECVD Tube Furnace Machine

CVD & PECVD Furnace

Inclined Rotary Plasma Enhanced Chemical Deposition PECVD Tube Furnace Machine

Item Number : KT-PE16

Price varies based on specs and customizations


Max. temperature
1600℃
RF Plasma Output Power
5 -500W adjustable with ± 1% stability
Rated vacuum pressure
10Pa (Standard), 6x10-5Pa (High vacuum optional)
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Get Quote

Why Choose Us

Reliable Partner

Easy ordering process, quality products, and dedicated support for your business success.

Easy Process Quality Assured Dedicated Support

Inclined Rotary Plasma Enhanced Chemical Deposition (PECVD) Tube Furnace

The Inclined Rotary Plasma Enhanced Chemical Deposition (PECVD) Tube Furnace Machine is a sophisticated system designed for advanced materials research and production. It utilizes a rotating furnace tube and a plasma generator to induce chemical reactions in a gaseous discharge, enabling the formation of high-quality solid deposits on various materials. This precise control over the deposition process makes it invaluable for cutting-edge applications.

Key Features & Benefits for Your Research

Our PECVD Tube Furnace is engineered to deliver precision, efficiency, and versatility to your laboratory:

  • Enhanced Deposition Quality:
    • Uniform Mixing and Heating: The rotating furnace tube, featuring a variable-diameter design and mixing baffle, ensures thorough material mixing and consistent temperature distribution, leading to uniform and high-quality depositions.
    • Versatile Plasma Source: The RF plasma source (5-500W, automatic matching) provides stable and adjustable power, increasing activation energy, lowering reaction temperatures, and improving overall process efficiency for tailored material deposition.
  • Precise Process Control:
    • Accurate Temperature Management: PID programmable temperature control offers exceptional accuracy (±1℃) and stability, allowing for precise heating and cooling cycles crucial for achieving optimal material properties. Supports remote and centralized control.
    • Controlled Gas Environment: High-precision MFC mass flowmeters (up to 4 channels) and a gas mixing device enable precise control over gas composition and flow rates, vital for optimizing deposition processes for specific materials and applications.
    • Efficient Vacuum System: Equipped with a high-performance mechanical pump for rapid evacuation of the furnace tube to vacuum. Optional high vacuum units (e.g., up to 6x10-5Pa with molecular pump) are available for demanding processes.
  • User-Friendly Operation & Durability:
    • Intuitive Interface: The CTF Pro controller with a 7-inch TFT touch screen allows for user-friendly program setting, real-time data monitoring, historical data analysis, and remote control capabilities, streamlining operations.
    • Rapid Processing: An automated furnace chamber sliding system facilitates quick heating and cooling, minimizing processing time and enhancing productivity. Auxiliary fast cooling and automatic sliding movement are available.
    • Robust Construction: Built with a stainless steel vacuum flange with adaptable ports, ensuring reliable sealing and high vacuum levels for a pristine deposition environment. Designed for top performance, low maintenance, easy installation, and a long working life.

Technical specifications

Furnace model PE-1600-60
Max. temperature 1600℃
Constant work temperature 1550℃
Furnace tube material High purity Al2O3 tube
Furnace tube diameter 60mm
Heating zone length 2x300mm
Chamber material Japan alumina fiber
Heating element Molybdenum Disilicide
Heating rate 0-10℃/min
Thermal couple B type
Temperature controller Digital PID controller/Touch screen PID controller
Temperature control accuracy ±1℃
RF Plasma unit
Output Power  5 -500W adjustable with ± 1% stability
RF frequency 13.56 MHz ±0.005% stability
Reflection Power 350W max.
Matching Automatic
Noise <50 dB
Cooling Air cooling.
Gas precise control unit
Flow meter MFC mass flow meter
Gas channels 4 channels
Flow rate MFC1: 0-5SCCM O2
MFC2: 0-20SCMCH4
MFC3: 0- 100SCCM H2
MFC4: 0-500 SCCM N2
Linearity ±0.5% F.S.
Repeatability ±0.2% F.S.
 Pipe line and valve Stainless steel
Maximum Operating Pressure 0.45MPa
Flow meter controller Digital Knob controller/Touch screen controller
Standard vacuum unit(Optional)
Vacuum pump Rotary vane vacuum pump
Pump flow rate 4L/S
Vacuum suction port KF25
Vacuum gauge Pirani/Resistance silicon vacuum gauge
Rated vacuum pressure 10Pa
High vacuum unit(Optional)
Vacuum pump Rotary vane pump+Molecular pump
Pump flow rate 4L/S+110L/S
Vacuum suction port KF25
Vacuum gauge Compound vacuum gauge
Rated vacuum pressure 6x10-5Pa
Above specifications and setups can be customized

Applications

The precision and versatility of our PECVD Tube Furnace make it ideal for a wide range of applications, empowering innovation in fields such as:

  • Semiconductor Manufacturing: Deposition of thin films like silicon nitride, silicon dioxide, and polysilicon on wafers.
  • Solar Cell Production: Creation of thin films such as cadmium telluride and copper indium gallium selenide.
  • Flat Panel Display Technology: Deposition of materials like indium tin oxide and zinc oxide.
  • Optical Coatings: Application of thin films like titanium dioxide and silicon nitride on optical components.
  • Medical Device Manufacturing: Coating medical devices with biocompatible or functional thin films such as hydroxyapatite and titanium nitride.

Operating Principle

The Inclined Rotary Plasma Enhanced Chemical Deposition (PECVD) Tube Furnace Machine operates as a plasma-enhanced rotary chemical vapor deposition system. Its furnace tube adopts a variable-diameter design with a mixing baffle, allowing for uniform heating and efficient mixing of materials. An inductively coupled plasma generator covers the furnace tube, providing increased activation energy, which can lower reaction temperatures and improve efficiency. The equipment utilizes a three-way mass flow meter and gas mixing device for precise gas control. Additionally, a high-performance mechanical pump enables rapid evacuation of the furnace tube, creating a vacuum environment suitable for various CVD processes.

Safety Features

Safety is paramount in our design. The KINTEK tube furnace incorporates multiple safety mechanisms:

  • Over-current protection and over-temperature alarm functions, which automatically shut off power if limits are exceeded.
  • Built-in thermocouple break detection; the furnace will stop heating and trigger an alarm if a failure is detected.
  • The PE Pro controller supports a power failure restarting function, allowing the furnace to resume its heating program once power is restored.

Standard Package

No. Description Quantity
1 Furnace 1
2 Quartz tube 1
3 Vacuum flange 2
4 Tube thermal block 2
5 Tube thermal block hook 1
6 Heat resistant glove 1
7 RF plasma source 1
8 Precise gas control 1
9 Vacuum unit 1
10 Operation manual 1

Optional Setups & Customization

Tailor the PECVD system to your specific research needs with our range of optional setups:

  • In-tube gas detection and monitoring (e.g., H2, O2).
  • Independent furnace temperature monitoring and recording.
  • RS 485 communication port for PC remote control and data exporting.
  • Control of insert gas feeding flow rates (e.g., mass flowmeter and float flowmeter).
  • Advanced touch screen temperature controller with versatile, operator-friendly functions.
  • High vacuum pump station configurations (e.g., vane vacuum pump, molecular pump, diffusion pump).

Your Partner in Advanced Material Science

Leveraging exceptional R&D and in-house manufacturing, KINTEK provides diverse laboratories with advanced high-temperature furnace solutions. Our product line, including Muffle, Tube, Rotary Furnaces, Vacuum & Atmosphere Furnaces, and CVD/PECVD/MPCVD Systems, is complemented by our strong deep customization capability to precisely meet your unique experimental requirements.

Ready to elevate your research with our Inclined Rotary PECVD Tube Furnace? Our experts are available to discuss your specific application, explore customization options, or provide a detailed quotation. Contact us today to learn more!

FAQ

What Are The Main Applications Of A Rotary Tube Furnace?

Rotary tube furnaces are widely used in powder metallurgy, material blending, and chemical reactions where uniform heating and continuous mixing are essential. They are particularly effective for processing granular or powdery materials.

What Is A Tube Furnace And How Does It Work?

A tube furnace is a heating device that generates heat through a heat source and transfers this heat to the workpiece or medium via the furnace tube. It provides stable and uniform heating suitable for various industrial applications. The temperature control system monitors the furnace temperature using thermocouples or other sensors, feeding the signal back to the controller which adjusts the power output of the heating elements to maintain precise temperature control.

What Is The Principle Of A Rotary Furnace?

A rotary furnace operates as a rotating cylinder around its axis, slightly tilted to facilitate the movement of charge material from one end to the other. This design promotes mixing and uniform heating. Heat is typically supplied by hot gases flowing in the counter-current direction to the material flow.

What Is A PECVD Machine Used For?

A PECVD (Plasma Enhanced Chemical Vapor Deposition) machine is extensively used in silicon and similar material processing, nanotechnology, solar cell production, and electronics. It is crucial for depositing thin films in solar cells and creating high-quality components for electronic devices. Applications include electronic device fabrication (isolation of conductive layers, capacitors, surface passivation), semiconductor devices, printable electronics, and medical device protection.

What Is A Rotating Furnace Used For?

A rotating furnace is used for various processes including carburizing (adding carbon to metal surfaces), nitriding (adding nitrogen to metal surfaces), sintering, annealing, and other advanced material treatments. It is also utilized in applications like biomass pyrolysis, activated carbon regeneration, and precise thin film deposition in semiconductor research.

What Is The Principle Of A CVD Machine?

The principle of Chemical Vapor Deposition (CVD) involves introducing the vapor of gaseous or liquid reactants containing film elements and other necessary gases into a reaction chamber. By applying energy in the form of increased temperature, plasma action, light radiation, or other means, chemical reactions occur on the substrate surface, generating new solid substances that deposit as thin films. The working principle of a CVD furnace involves introducing precursor gases into the furnace chamber, where high temperatures cause these gases to react or decompose near the substrate surface. The desired material deposits on the substrate as a solid film, while by-products and unused gases are evacuated through an exhaust or vacuum system.

What Is The Principle Of An MPCVD Machine?

An MPCVD (Microwave Plasma Chemical Vapor Deposition) machine operates by using a microwave generator to produce plasma by ionizing a gas mixture. This plasma is housed in a reaction chamber under low pressure, where the substrate is held in place by a substrate holder. The key components include a Microwave Generator, Plasma Chamber, Gas Delivery System, Substrate Holder, and Vacuum System.

What Are The Main Applications Of Multi-zone Tube Furnaces?

Multi-zone tube furnaces are used in various commercial and research applications, including semiconductor and battery production, thermocouple and mineral-insulated cable manufacturing, vacuum brazing and heat treatment, vacuum curing and sintering, water/waste/soil testing, aerospace ceramic and metals testing, oil and gas analysis, solid oxide fuel cells, and polymer composites/graphene production. They're also used for metal heat treatments (quenching, tempering, annealing), preheating for welding, ceramic/powder metallurgy sintering, coating treatments, and material research experiments.

What Are The Key Features Of A Rotary Tube Furnace?

A rotary tube furnace features a rotating mechanism that ensures uniform heat distribution and thorough mixing of samples. It is designed for continuous processing and can accommodate various sample volumes. The furnace typically includes multiple heated zones, a rotatable and tiltable furnace tube, and can reach temperatures up to 1200°C.

What Are The Main Applications Of Tube Furnaces?

Tube furnaces are widely used for gas quenching tests under vacuum or atmospheric conditions, heat treatment applications including syntheses and purifications, oxidation, diffusion, calcination, and thermal annealing of inorganic or organic compounds. They are also used in material testing, thermal processing, and chemical reactions where controlled heating and cooling rates are required. Vertical tube furnaces are particularly suitable for processes where samples need to be dropped into the furnace from the top.

What Are The Advantages Of Using A Rotary Furnace?

Rotary furnaces offer several advantages including high energy utilization, flexibility in handling various feed materials, batch furnace capability, high production capacity, increased lead recovery, environmental friendliness, and user-friendly operation with less manpower requirement.

What Are The Main Types Of PECVD Machines?

PECVD machines come in various types, including Inclined Rotary Plasma Enhanced Chemical Deposition PECVD Tube Furnace Machines, Split Chamber CVD Tube Furnaces with Vacuum Stations, RF PECVD Systems, and Cylindrical Resonator MPCVD Machine Systems. Each type is designed for specific applications such as semiconductor research, thin-film deposition, and lab diamond growth.

What Are The Main Types Of Rotating Furnaces Available?

The main types of rotating furnaces include electric rotary kilns for pyrolysis and calcination, vacuum-sealed rotary tube furnaces for continuous processing, laboratory vacuum tilt rotary tube furnaces, split multi-heating zone rotary tube furnaces, and inclined rotary plasma-enhanced chemical deposition (PECVD) tube furnaces. Each type is designed for specific applications and temperature requirements.

What Are The Advantages Of Using A CVD Machine?

CVD provides high purity, uniformity, and conformality, making it suitable for coating complex geometries. It is used in industries like semiconductor, aerospace, and biomedical. Unlike PVD, CVD is not limited to line-of-sight application, and the coating bonds to the surface during the reaction, creating superior adhesion.

What Are The Advantages Of Using An MPCVD Machine?

MPCVD machines offer several advantages: they eliminate contamination from hot wires (non-polar discharge), allow the use of multiple gases, provide stable control of reaction temperature, enable large-area stable discharge plasma, and offer precise control over film thickness, purity, and crystal quality. Additionally, they produce large-area diamond films, ensure stable conditions, maintain consistent sample quality, and are cost-effective.

What Are The Key Features Of Multi-zone Tube Furnaces?

Key features include: 1) Flexible annealing and chemical vapor deposition capabilities, 2) Accommodation of samples up to 60mm (2 inches), 3) Built-in manifold for easy gas delivery, 4) Natural temperature gradients with cooler ends and uniform heating in the center, 5) Adaptability for various gases or vacuum conditions, and 6) Multiple independently controlled heating zones for precise temperature profiles.

How Does A Rotary Tube Furnace Work?

Rotary tube furnaces operate on the principle of indirect firing, where heat is transferred from a heat source to the materials via a rotating tube. They use a continuous thermal system with multiple control zones to ensure uniform heating. The furnace burns pulverized, solid, gaseous, or liquid fuel in its working section, creating heating gases that flow towards the sample. The rotating drum, lined with refractory material and mounted at an angle, facilitates this process.

What Are The Advantages Of Using A Tube Furnace?

Tube furnaces offer several advantages including mature technology, simple furnace structure, low power consumption, high thermal efficiency, ease of operation and control, continuous production capability, precise temperature control, uniform temperature distribution, and adaptability to different atmospheres. They also enable higher yield of products, high product concentration, and the ability to recover most cracked gas and flue gas. Multiple furnaces can be combined for large-scale production.

What Are The Key Features Of A Rotary Furnace?

The key features of a rotary furnace include high-temperature capabilities, multi-zone heating control, customizable rotation and process control, atmosphere versatility, and integrated safety and environmental controls.

How Does A PECVD Machine Work?

A PECVD machine works by using plasma to enhance the chemical vapor deposition process. Deposition rates and film properties (e.g., thickness, hardness, refractive index) are controlled by adjusting parameters such as gas flow rates, operating temperatures, and plasma conditions. The plasma allows for fine-tuning of material properties like density, purity, and roughness, enabling the creation of high-quality thin films at lower substrate temperatures.

How Does A Rotating Furnace Work?

A rotating furnace operates by rotating the material inside the furnace to ensure uniform heat distribution. The rotation mechanism helps in consistent radial temperature and precise temperature control, often achieved via electric heating. This design is energy-efficient and suitable for processes requiring uniform treatment of materials.

What Are The Applications Of A CVD Machine?

CVD is used in various applications, including semiconductor device production (e.g., silicon nitride insulating layers), optical coatings, protective coatings, and advanced materials like graphene and carbon nanotubes, which have unique electrical, thermal, and mechanical properties. It is also used to deposit conformal films and modify substrate surfaces in ways traditional techniques cannot. Applications include atomic layer deposition, integrated circuits, photovoltaic devices, wear-resistant coatings, polymer coatings with special properties, metal-organic frameworks for gas sensing, and membrane coatings for water treatment.

What Are The Key Applications Of MPCVD Machines?

MPCVD machines are primarily used for high-purity lab-grown diamond synthesis, including diamond films and other advanced materials. Their applications extend to semiconductor research, optics, and MEMS (Micro-Electro-Mechanical Systems) due to their ability to produce high-quality, homogeneous films with precise control.

How Does A Multi-zone Tube Furnace Work?

A multi-zone tube furnace works by: 1) Generating heat through multiple independently controlled heating elements, 2) Transferring this heat uniformly through the furnace tube to the workpiece, 3) Creating either precise temperature gradients (for processes like CVD film growth) or extended constant-temperature zones (when multiple zones are set to the same temperature), and 4) Maintaining stable heating conditions suitable for various industrial processes.

What Are The Advantages Of Using A Rotary Tube Furnace?

The rotary tube furnace offers several advantages, including uniform temperature distribution due to its rotating action, which prevents sample settling and ensures consistent processing. It enhances heat transfer efficiency, leading to faster processing times and more uniform results. Additionally, its design allows for excellent efficiency in heat transfer and can be customized with multiple heated zones to suit specific needs.

What Types Of Tube Furnaces Are Available?

There are various types of tube furnaces including laboratory quartz tube furnaces, split multi-heating zone rotary tube furnaces, multi-zone tube furnaces, high temperature tube furnaces (up to 1700°C), PECVD tube furnaces for thin film deposition, vacuum tube furnaces, and vertical tube furnaces. These come with different features like rapid heating, adjustable tilt, 360° rotation, customizable heating zones, and vacuum readiness to suit different applications.

What Are The Common Applications Of A Rotary Furnace?

Rotary tube furnaces are particularly useful in powder metallurgy, material blending, and chemical reactions where uniform heating and continuous mixing are essential. They are also used for processing granular or powdery materials, producing materials like alumina and iron ore pellets, and excelling in applications such as calcining and oxidation that require continuous throughput of loose materials.

What Are The Key Features Of A PECVD Machine?

Key features of a PECVD machine include a universal base console housing electronic subsystems, a PECVD process chamber with a pumping port, heated upper and lower electrodes, parameter ramping software, and a gas pod with mass-flow-controlled gas lines. The system typically includes a chamber, vacuum pump(s), and a gas distribution system, with configurations varying based on power source, gas type, and pressure sensors.

What Are The Advantages Of Using A Rotating Furnace?

The advantages of a rotating furnace include uniform heat distribution for consistent results, precise temperature control, energy efficiency compared to traditional combustion methods, and flexibility in customizing heat treatment processes. Additionally, rotating furnaces are cost-effective for low-volume production and can be tailored for specific research or industrial needs.

What Are The Key Features Of A CVD Machine?

Key features of a CVD furnace include high temperature capability (typically ranging from 200°C to over 1500°C), precise gas flow control, atmosphere control (vacuum, atmospheric pressure, or low-pressure environments), uniform heating for even thin-film deposition, and an efficient exhaust system to remove by-products and unreacted gases. Key characteristics of a CVD coating process include application at elevated temperatures to facilitate the reaction, typically under vacuum. Contaminants must be removed from the part surface before coating.

What Are The Main Components Of An MPCVD Machine?

The main components of an MPCVD machine include a microwave generator (to produce plasma), a reaction chamber (to house the substrate and gas mixture under low pressure), a substrate holder (to hold the substrate during deposition), a gas delivery system (to introduce and control the gas mixture), and a vacuum system (to maintain the necessary low-pressure environment).

What Are The Advantages Of Using A Multi-zone Tube Furnace?

Advantages include: 1) Mature, reliable technology with simple furnace structure, 2) Low power consumption with high thermal efficiency, 3) Easy operation and precise control, 4) Capability for continuous production, 5) Ability to create extended uniform heating zones or precise temperature gradients, 6) Higher product yields in chemical processes, 7) Ability to recover process gases, 8) Broad raw material applicability, and 9) Scalability through furnace combination for large-scale production.

What Temperature Can A Rotary Tube Furnace Reach?

A rotary tube furnace can reach a maximum temperature of 1200°C, making it suitable for high-temperature applications such as calcination, sintering, and heat treatment.

What Temperature Ranges Can Tube Furnaces Achieve?

Tube furnaces are available in various temperature ranges to suit different applications. Standard models typically reach up to 1200°C, while high-temperature models can achieve 1400°C to 1700°C. Some specialized models can even reach up to 2000°C. The temperature capability depends on the heating elements and furnace tube materials used (such as quartz or alumina).

How Does A Rotary Furnace Handle Different Materials?

Rotary furnaces are flexible in handling various feed materials due to their rotating and slightly tilted design, which ensures uniform heating and mixing. This makes them suitable for a wide range of materials, including granular or powdery substances, and allows for efficient processing in applications like calcination and oxidation.

What Are The Advantages Of Using A PECVD Machine?

PECVD machines offer several advantages, including rapid deposition rates (e.g., 160 times faster for silicon nitride compared to CVD), the ability to create films with different properties by adjusting plasma parameters and gas composition, high-quality and uniform thickness films, good adhesion, reduced risk of cracking, and suitability for complex surfaces. They also provide high solvent and corrosion resistance with chemical and thermal stability.

What Safety Features Are Included In Rotating Furnaces?

Rotating furnaces are equipped with important safety features such as over-temperature protection, emergency shut-off mechanisms, and clear alarm systems. These features ensure safe operation and prevent accidents during high-temperature processes.

What Types Of CVD Machines Are Available?

There are several types of CVD machines available, including Cylindrical Resonator MPCVD Machine Systems for lab diamond growth, Custom Made Versatile CVD Tube Furnaces for chemical vapor deposition, Slide PECVD Tube Furnaces with liquid gasifiers, Vacuum Hot Press Furnace Machines, Inclined Rotary Plasma Enhanced Chemical Deposition (PECVD) Tube Furnaces, Split Chamber CVD Tube Furnaces with Vacuum Stations, and RF PECVD Systems for radio frequency plasma enhanced chemical vapor deposition. Each type is designed for specific applications and offers unique features.

How Does An MPCVD Machine Enhance Energy Efficiency?

An MPCVD machine enhances energy efficiency through its electrode-less process, which reduces contamination and energy loss. The microwave plasma generation is highly efficient, and the system's modular and scalable design allows for optimized energy use across various industrial applications.

What Types Of Multi-zone Tube Furnaces Are Available?

Available types include: 1) Split multi-heating zone rotary tube furnaces (with tilt and rotation capabilities), 2) Laboratory quartz tube furnaces (up to 1700°C with 1-10 zones), 3) Rapid thermal processing (RTP) furnaces with fast heating rates, 4) CVD tube furnaces for chemical vapor deposition, 5) PECVD furnaces for plasma-enhanced processes, 6) Vacuum tube furnaces, and 7) High-pressure tube furnaces. These come in various configurations with customizable zone numbers, temperature ranges, and special features like vacuum/atmosphere control.

What Types Of Materials Can Be Processed In A Rotary Tube Furnace?

Rotary tube furnaces are ideal for processing granular or powdery materials. They are commonly used in applications involving powder metallurgy, material blending, and chemical reactions where uniform heating and continuous mixing are required.

Can Tube Furnaces Operate Under Different Atmospheres?

Yes, tube furnaces are versatile and can operate under various atmospheres including air, inert gases (like argon or nitrogen), vacuum, and specialized gas mixtures. This makes them suitable for a wide range of processes including oxidation, reduction, annealing, and chemical vapor deposition (CVD). Many models come with vacuum-ready designs and gas control systems for precise atmosphere management.

What Materials Can Be Deposited Using A PECVD Machine?

PECVD machines can deposit a variety of materials, including silicon nitride (SiN) and silicon carbide (SiC), which are particularly useful in semiconductor and high-temperature MEMS applications. These machines are versatile and can be used to create thin films with tailored properties for specific industrial and research needs.

Can Rotating Furnaces Be Customized For Specific Applications?

Yes, rotating furnaces can be customized for specific applications. They are available in various configurations, including different heating zones, adjustable tilt angles, and 360° rotation capabilities. Customization options also include vacuum and controlled atmosphere settings to meet the precise needs of research or production environments.

Why Is MPCVD Preferred For Diamond Growth?

MPCVD is preferred for diamond growth because it provides a high density of charged particles and reactive species, enables deposition of large-area diamond films at lower pressures, and ensures better homogeneity in the as-grown films. These features result in high-purity, high-quality diamonds with precise control over their properties.

What Makes KINTEK Tube Furnaces Special?

KINTEK tube furnaces stand out for their precision temperature control (with some models offering rapid heating up to 100°C/sec), customizable heating zones (from 1 to 10 zones), vacuum-ready designs, and safety certifications. They offer versatile solutions for advanced applications like material synthesis, CVD, sintering, and semiconductor research, with options for rotary mechanisms, split chambers, and plasma-enhanced configurations.

Why Is PECVD Preferred Over Other Deposition Methods?

PECVD is preferred over other deposition methods because it allows for deposition at lower substrate temperatures, provides good step coverage, and enables highly uniform film deposition. It also offers excellent control over material properties such as refractive index, stress, and hardness, making it ideal for applications requiring precise thin-film characteristics.
View more faqs for this product

4.8

out of

5

This machine is a game-changer! The plasma enhancement works flawlessly, and the inclined rotary design is brilliant.

Elara Voss

4.7

out of

5

Incredible value for money. The quality is top-notch, and it arrived faster than expected. Highly recommend!

Rafael Mendoza

4.9

out of

5

The durability is impressive. We've used it daily for months with zero issues. A solid investment!

Sienna Khatri

4.8

out of

5

Cutting-edge technology at its finest. The PECVD process is so efficient, it’s like magic!

Nikolai Petrov

4.7

out of

5

Superb delivery speed and setup was a breeze. The machine performs beyond expectations.

Ananya Rao

4.9

out of

5

The precision and consistency are unmatched. This is what technological advancement looks like!

Lucien Dubois

4.8

out of

5

Worth every penny! The build quality is exceptional, and it’s incredibly user-friendly.

Zara Al-Mansoor

4.7

out of

5

Fast delivery and outstanding performance. This machine has revolutionized our lab’s workflow.

Hiroshi Tanaka

Products

Inclined Rotary Plasma Enhanced Chemical Deposition PECVD Tube Furnace Machine

PDF Format Catalog
Download

Category

Cvd & Pecvd Furnace

PDF Format Catalog
Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Inclined Rotary Plasma Enhanced Chemical Deposition PECVD Tube Furnace Machine

Inclined Rotary Plasma Enhanced Chemical Deposition PECVD Tube Furnace Machine

KINTEK's PECVD coating machine delivers precision thin films at low temperatures for LEDs, solar cells & MEMS. Customizable, high-performance solutions.

Slide PECVD Tube Furnace with Liquid Gasifier PECVD Machine

Slide PECVD Tube Furnace with Liquid Gasifier PECVD Machine

KINTEK Slide PECVD Tube Furnace: Precision thin film deposition with RF plasma, rapid thermal cycling, and customizable gas control. Ideal for semiconductors and solar cells.

1700℃ High Temperature Laboratory Tube Furnace with Quartz or Alumina Tube

1700℃ High Temperature Laboratory Tube Furnace with Quartz or Alumina Tube

KINTEK's Tube Furnace with Alumina Tube: Precision heating up to 1700°C for material synthesis, CVD, and sintering. Compact, customizable, and vacuum-ready. Explore now!

1400℃ High Temperature Laboratory Tube Furnace with Quartz and Alumina Tube

1400℃ High Temperature Laboratory Tube Furnace with Quartz and Alumina Tube

KINTEK's Tube Furnace with Alumina Tube: Precision high-temperature processing up to 2000°C for labs. Ideal for material synthesis, CVD, and sintering. Customizable options available.

Electric Rotary Kiln Small Rotary Furnace for Activated Carbon Regeneration

Electric Rotary Kiln Small Rotary Furnace for Activated Carbon Regeneration

Electric Activated Carbon Regeneration Furnace by KINTEK: High-efficiency, automated rotary kiln for sustainable carbon recovery. Minimize waste, maximize savings. Get a quote!

RF PECVD System Radio Frequency Plasma Enhanced Chemical Vapor Deposition

RF PECVD System Radio Frequency Plasma Enhanced Chemical Vapor Deposition

KINTEK RF PECVD System: Precision thin-film deposition for semiconductors, optics & MEMS. Automated, low-temperature process with superior film quality. Custom solutions available.

Electric Rotary Kiln Small Rotary Furnace Biomass Pyrolysis Plant Rotating Furnace

Electric Rotary Kiln Small Rotary Furnace Biomass Pyrolysis Plant Rotating Furnace

KINTEK's Rotary Biomass Pyrolysis Furnace converts biomass to biochar, bio-oil, and syngas efficiently. Customizable for research or production. Get your solution now!

Vertical Laboratory Quartz Tube Furnace Tubular Furnace

Vertical Laboratory Quartz Tube Furnace Tubular Furnace

Precision KINTEK Vertical Tube Furnace: 1800℃ heating, PID control, customizable for labs. Ideal for CVD, crystal growth & materials testing.

High Pressure Laboratory Vacuum Tube Furnace Quartz Tubular Furnace

High Pressure Laboratory Vacuum Tube Furnace Quartz Tubular Furnace

KINTEK High Pressure Tube Furnace: Precision heating up to 1100°C with 15Mpa pressure control. Ideal for sintering, crystal growth, and lab research. Customizable solutions available.

1200℃ Split Tube Furnace Laboratory Quartz Tube Furnace with Quartz Tube

1200℃ Split Tube Furnace Laboratory Quartz Tube Furnace with Quartz Tube

Discover KINTEK's 1200℃ Split Tube Furnace with quartz tube for precise high-temperature lab applications. Customizable, durable, and efficient. Get yours now!

Laboratory Quartz Tube Furnace RTP Heating Tubular Furnace

Laboratory Quartz Tube Furnace RTP Heating Tubular Furnace

KINTEK's RTP Rapid Heating Tube Furnace delivers precise temperature control, rapid heating up to 100°C/sec, and versatile atmosphere options for advanced lab applications.

915MHz MPCVD Diamond Machine Microwave Plasma Chemical Vapor Deposition System Reactor

915MHz MPCVD Diamond Machine Microwave Plasma Chemical Vapor Deposition System Reactor

KINTEK MPCVD Diamond Machine: High-quality diamond synthesis with advanced MPCVD technology. Faster growth, superior purity, customizable options. Boost production now!

Vacuum Sealed Continuous Working Rotary Tube Furnace Rotating Tube Furnace

Vacuum Sealed Continuous Working Rotary Tube Furnace Rotating Tube Furnace

Precision rotary tube furnace for continuous vacuum processing. Ideal for calcination, sintering, and heat treatment. Customizable up to 1600℃.

Molybdenum Disilicide MoSi2 Thermal Heating Elements for Electric Furnace

Molybdenum Disilicide MoSi2 Thermal Heating Elements for Electric Furnace

High-performance MoSi2 heating elements for labs, reaching 1800°C with superior oxidation resistance. Customizable, durable, and reliable for high-temperature applications.

Multi Heating Zones CVD Tube Furnace Machine for Chemical Vapor Deposition Equipment

Multi Heating Zones CVD Tube Furnace Machine for Chemical Vapor Deposition Equipment

KINTEK's Multi-Zone CVD Tube Furnaces offer precision temperature control for advanced thin film deposition. Ideal for research and production, customizable for your lab needs.

HFCVD Machine System Equipment for Drawing Die Nano Diamond Coating

HFCVD Machine System Equipment for Drawing Die Nano Diamond Coating

KINTEK's HFCVD system delivers high-quality nano-diamond coatings for wire drawing dies, enhancing durability with superior hardness and wear resistance. Explore precision solutions now!

MPCVD Machine System Reactor Bell-jar Resonator for Lab and Diamond Growth

MPCVD Machine System Reactor Bell-jar Resonator for Lab and Diamond Growth

KINTEK MPCVD Systems: Precision diamond growth machines for high-purity lab-grown diamonds. Reliable, efficient, and customizable for research and industry.

Spark Plasma Sintering SPS Furnace

Spark Plasma Sintering SPS Furnace

Discover KINTEK's advanced Spark Plasma Sintering (SPS) Furnace for rapid, precise material processing. Customizable solutions for research and production.

Cylindrical Resonator MPCVD Machine System for Lab Diamond Growth

Cylindrical Resonator MPCVD Machine System for Lab Diamond Growth

KINTEK MPCVD Systems: Grow high-quality diamond films with precision. Reliable, energy-efficient, and beginner-friendly. Expert support available.